Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xxiii</td>
</tr>
<tr>
<td>List of Symbols and Abbreviations</td>
<td>xxv</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Importance of Tradeoffs and Optimization in Analog CMOS Design

1.2 Industry Designers and University Students as Readers

1.3 Organization and Overview of Book

1.4 Full or Selective Reading of Book

1.5 Example Technologies and Technology Extensions

1.6 Limitations of the Methods

1.7 Disclaimer

PART I MOS Device Performance, Tradeoffs and Optimization for Analog CMOS Design

2 MOS Design from Weak through Strong Inversion

2.1 Introduction

2.2 MOS Design Complexity Compared to Bipolar Design

2.3 Bipolar Transistor Collector Current and Transconductance

2.4 MOS Drain Current and Transconductance

2.4.1 In Weak Inversion

2.4.2 In Strong Inversion without Velocity Saturation Effects

2.4.3 In Strong Inversion with Velocity Saturation Effects

2.4.4 In Moderate Inversion and All Regions of Operation

2.5 MOS Drain–Source Conductance

2.6 Analog CMOS Electronic Design Automation Tools and Design Methods

2.6.1 Electronic Design Automation Tools

2.6.2 Design Methods

2.6.3 Previous Application of Design Methods Presented in this Book

References

3 MOS Performance versus Drain Current, Inversion Coefficient, and Channel Length

3.1 Introduction

3.2 Advantages of Selecting Drain Current, Inversion Coefficient, and Channel Length in Analog CMOS Design
CONTENTS

3.2.1 Optimizing Drain Current, Inversion Coefficient, and Channel Length Separately 35
3.2.2 Design in Moderate Inversion 35
3.2.3 Design Inclusive of Velocity Saturation Effects 36
3.2.4 Design with Technology Independence 36
3.2.5 Simple Predictions of Performance and Trends 36
3.2.6 Minimizing Iterative Computer Simulations – “PreSPICE” Guidance 37
3.2.7 Observing Performance Tradeoffs – The MOSFET Operating Plane 37
3.2.8 Cross-Checking with Computer Simulation MOS Models 39

3.3 Process Parameters for Example Processes 40
3.3.1 Calculation of Composite Process Parameters 40
3.3.2 DC, Small-Signal, and Intrinsic Gate Capacitance Parameters 42
3.3.3 Flicker Noise and Local-Area DC Mismatch Parameters 44
3.3.4 Gate-Overlap and Drain–Body Capacitance Parameters 45
3.3.5 Temperature Parameters 46

3.4 Substrate Factor and Inversion Coefficient 46
3.4.1 Substrate Factor 47
3.4.2 Inversion Coefficient 50
 3.4.2.1 Traditional inversion coefficient 50
 3.4.2.2 Fixed–normalized inversion coefficient 51
 3.4.2.3 Using the fixed–normalized inversion coefficient in design 52
 3.4.2.4 Regions and subregions of inversion 53

3.5 Temperature Effects 55
3.5.1 Bandgap Energy, Thermal Voltage, and Substrate Factor 55
3.5.2 Mobility, Transconductance Factor, and Technology Current 57
3.5.3 Inversion Coefficient 59
3.5.4 Threshold Voltage 60
3.5.5 Design Considerations 60

3.6 Sizing Relationships 61
3.6.1 Shape Factor 62
3.6.2 Channel Width 64
3.6.3 Gate Area and Silicon Cost 65

3.7 Drain Current and Bias Voltages 67
3.7.1 Drain Current 67
 3.7.1.1 Without small-geometry effects 68
 3.7.1.2 With velocity saturation effects 70
 3.7.1.3 With VFMR effects 72
 3.7.1.4 With velocity saturation and VFMR effects 72
 3.7.1.5 The equivalent velocity saturation voltage 75
 3.7.1.6 Predicted and measured values 76
 3.7.1.7 The extrapolated threshold voltage 79
3.7.2 Effective Gate–Source Voltage 80
 3.7.2.1 Without small-geometry effects 80
 3.7.2.2 With velocity saturation and VFMR effects 82
 3.7.2.3 Predicted and measured values 86
 3.7.2.4 Summary of trends 88
3.7.3 Drain–Source Saturation Voltage 89
 3.7.3.1 Physical versus circuit definition 89
 3.7.3.2 Without small-geometry effects 90
 3.7.3.3 With velocity saturation effects 92
CONTENTS

3.7.3.4 Predicted and measured values 96
3.7.3.5 Summary of trends 97

3.8 Small-Signal Parameters and Intrinsic Voltage Gain 98
 3.8.1 Small-Signal Model and its Application 98
 3.8.2 Transconductance 103
 3.8.2.1 Without small-geometry effects 103
 3.8.2.2 With velocity saturation and VFMR effects 106
 3.8.2.3 Predicted and measured values 111
 3.8.2.4 Summary of trends 113
 3.8.2.5 Universal g_m/I_D characteristic in CMOS technologies 115
 3.8.2.6 Distortion 115
 3.8.3 Body-Effect Transconductance and Relationship to Substrate Factor 121
 3.8.3.1 Substrate factor 122
 3.8.3.2 Body-effect transconductance 125
 3.8.3.3 Predicted and measured values 126
 3.8.3.4 Summary of trends 129
 3.8.4 Drain Conductance 130
 3.8.4.1 Due to channel length modulation 131
 3.8.4.2 Due to DIBL 141
 3.8.4.3 Due to hot-electron effects 146
 3.8.4.4 Impact of increase near $V_{DS, sat}$ 150
 3.8.4.5 Measured values 152
 3.8.4.6 Summary of trends 161
 3.8.5 Intrinsic Voltage Gain 163

3.9 Capacitances and Bandwidth 169
 3.9.1 Gate-Oxide Capacitance 169
 3.9.2 Intrinsic Gate Capacitances 170
 3.9.3 Extrinsic Gate-Overlap Capacitances 173
 3.9.4 Drain–Body and Source–Body Junction Capacitances 176
 3.9.5 Intrinsic Drain–Body and Source–Body Capacitances 179
 3.9.6 Intrinsic Bandwidth 179
 3.9.7 Extrinsic and Diode-Connected Bandwidths 185

3.10 Noise 188
 3.10.1 Thermal Noise in the Ohmic Region 189
 3.10.2 Thermal Noise in the Saturation Region 190
 3.10.2.1 Without small-geometry effects 190
 3.10.2.2 With small-geometry effects 193
 3.10.2.3 Summary of drain-referred and gate-referred thermal noise 194
 3.10.3 Flicker Noise 200
 3.10.3.1 Carrier density fluctuation model 201
 3.10.3.2 Carrier mobility fluctuation model 203
 3.10.3.3 Unified, carrier density, correlated mobility fluctuation model 204
 3.10.3.4 Flicker-noise prediction from flicker-noise factors 207
 3.10.3.5 Reported flicker-noise factors and trends 209
 3.10.3.6 Measured and predicted flicker noise 212
 3.10.3.7 Summary of gate-referred and drain-referred flicker noise 217
 3.10.3.8 Flicker-noise corner frequency 224
 3.10.4 Gate, Substrate, and Source Resistance Thermal Noise 227
 3.10.5 Channel Avalanche Noise 229
 3.10.6 Induced Gate Noise Current 229
 3.10.7 Gate Leakage Noise Current 231
3.11 Mismatch

3.11.1 Local-Area DC Mismatch

3.11.1.1 Modeling

3.11.1.2 Reported mismatch factors and trends

3.11.1.3 Edge effects and other model limitations

3.11.1.4 Calculating gate–source voltage and drain current mismatch

3.11.1.5 Threshold-voltage mismatch increase for non-zero V_{SB}

3.11.1.6 Threshold-voltage dominance of mismatch

3.11.1.7 Summary of gate–source voltage and drain current mismatch

3.11.2 Distance DC Mismatch

3.11.2.1 Modeling

3.11.2.2 Reported mismatch factors and trends

3.11.2.3 Gate–source voltage and drain current mismatch

3.11.2.4 Threshold-voltage dominance of mismatch

3.11.2.5 Critical spacing for comparable distance and local-area mismatch

3.11.3 DC Mismatch Effects on Circuit Performance

3.11.3.1 Bandwidth, power, and accuracy tradeoffs in current-mode circuits

3.11.3.2 Bandwidth, power, and accuracy tradeoffs in voltage-mode circuits

3.11.3.3 Timing skew in digital circuits

3.11.4 Small-Signal Parameter and Capacitance Mismatch

3.11.4.1 Transconductance mismatch

3.11.4.2 Drain–source conductance mismatch

3.11.4.3 Mismatch effects on circuit performance

3.12 Leakage Current

3.12.1 Gate Leakage Current and Conductance

3.12.1.1 Gate current

3.12.1.2 Gate conductance

3.12.2 Gate Leakage Current Effects on Circuit Performance

3.12.2.1 Minimum frequency of operation

3.12.2.2 Intrinsic current gain

3.12.2.3 Discharge of capacitances

3.12.2.4 Noise

3.12.2.5 Mismatch

3.12.2.6 Summary of tradeoffs

3.12.3 Drain–Body and Source–Body Leakage Current

3.12.4 Subthreshold Drain Leakage Current

References

4 Tradeoffs in MOS Performance, and Design of Differential Pairs and Current Mirrors

4.1 Introduction

4.2 Performance Trends

4.2.1 Exploring Drain Current, Inversion Coefficient, and Channel Length Separately

4.2.2 Trends as Inversion Coefficient Increases

4.2.3 Trends as Channel Length Increases

4.2.4 Trends as Drain Current Increases

4.3 Performance Tradeoffs

4.3.1 Overview – The MOSFET Operating Plane

4.3.2 Region and Level of Inversion – The Inversion Coefficient as a Number Line

References
4.3.3 Tradeoffs Common to All Devices
 4.3.3.1 Channel width and gate area 306
 4.3.3.2 Intrinsic gate capacitance and drain–body capacitance 309
 4.3.3.3 Effective gate–source voltage and drain–source saturation voltage 310
 4.3.3.4 Transconductance efficiency and Early voltage 312
 4.3.3.5 Intrinsic voltage gain and bandwidth 314

4.3.4 Tradeoffs Specific to Differential-Pair Devices
 4.3.4.1 Transconductance distortion 320
 4.3.4.2 Intrinsic gate capacitance and gate-referred thermal-noise voltage 323
 4.3.4.3 Gate-referred flicker-noise voltage and gate–source mismatch voltage 325

4.3.5 Tradeoffs Specific to Current-Mirror Devices
 4.3.5.1 Intrinsic bandwidth and drain-referred thermal-noise current 329
 4.3.5.2 Drain-referred flicker-noise current and drain mismatch current 333

4.3.6 Tradeoffs in Figures of Merit
 4.3.6.1 Transconductance efficiency and Early voltage 338
 4.3.6.2 Intrinsic voltage gain, bandwidth, and gain–bandwidth 338
 4.3.6.3 Transconductance efficiency and intrinsic bandwidth 339
 4.3.6.4 Thermal-noise efficiency and flicker-noise area efficiency 340
 4.3.6.5 Bandwidth, power, and accuracy with DC offset 340
 4.3.6.6 Bandwidth, power, and accuracy with thermal noise 342
 4.3.6.7 Comparison of bandwidth, power, and accuracy for DC offset and thermal noise 345

4.4 Design of Differential Pairs and Current Mirrors Using the Analog CMOS Design, Tradeoffs and Optimization Spreadsheet
 4.4.1 Selecting Inversion Coefficient 346
 4.4.2 Selecting Channel Length 353
 4.4.3 Selecting Drain Current 359
 4.4.4 Optimizing for DC, Balanced, and AC Performance 363
 4.4.4.1 DC optimization 364
 4.4.4.2 AC optimization 366
 4.4.4.3 Balanced optimization 366
 4.4.4.4 Optimizations at millipower operation 367
 4.4.4.5 Optimizations at micropower operation 369
 4.4.4.6 Summary of micropower performance considerations 372

4.4.5 Summary Procedure for Device Optimization 372

References 373

PART II Circuit Design Examples Illustrating Optimization for Analog CMOS Design
5 Design of CMOS Operational Transconductance Amplifiers Optimized for DC, Balanced, and AC Performance
 5.1 Introduction 377
 5.2 Circuit Description 379
 5.2.1 Simple OTAs 379
 5.2.2 Cascoded OTAs 380
 5.3 Circuit Analysis and Performance Optimization 382
 5.3.1 Transconductance 383
 5.3.1.1 Simple OTAs 383
 5.3.1.2 Cascoded OTAs 384
CONTENTS

5.3.1.3 Optimization 384
5.3.2 Output Resistance 385
 5.3.2.1 Simple OTAs 385
 5.3.2.2 Cascoded OTAs 385
 5.3.2.3 Optimization 387
5.3.3 Voltage Gain 387
 5.3.3.1 Simple OTAs 387
 5.3.3.2 Cascoded OTAs 388
 5.3.3.3 Optimization 388
5.3.4 Frequency Response 389
 5.3.4.1 Simple OTAs 389
 5.3.4.2 Cascoded OTAs 391
 5.3.4.3 Optimization 392
5.3.5 Thermal Noise 393
 5.3.5.1 Simple OTAs 393
 5.3.5.2 Cascoded OTAs 394
 5.3.5.3 Optimization 396
5.3.6 Flicker Noise 397
 5.3.6.1 Simple OTAs 397
 5.3.6.2 Cascoded OTAs 399
 5.3.6.3 Optimization 400
5.3.7 Offset Voltage due to Local-Area Mismatch 403
 5.3.7.1 Simple OTAs 403
 5.3.7.2 Cascoded OTAs 407
 5.3.7.3 Optimization 409
5.3.8 Systematic Offset Voltage for Simple OTAs 412
5.3.9 Input and Output Capacitances 413
 5.3.9.1 Simple OTAs 413
 5.3.9.2 Cascoded OTAs 415
 5.3.9.3 Optimization 416
5.3.10 Slew Rate 417
 5.3.10.1 Simple OTAs 417
 5.3.10.2 Cascoded OTAs 417
 5.3.10.3 Optimization 417
5.3.11 Input and Output Voltage Ranges 417
 5.3.11.1 Simple OTAs 417
 5.3.11.2 Cascoded OTAs 419
 5.3.11.3 Optimization 421
5.3.12 Input, 1 dB Compression Voltage 423
 5.3.12.1 Simple OTAs 423
 5.3.12.2 Cascoded OTAs 423
 5.3.12.3 Optimization 424
5.3.13 Management of Small-Geometry Effects 424
5.4 Design Optimization and Resulting Performance for the Simple OTAs 425
 5.4.1 Selection of MOSFET Inversion Coefficients and Channel Lengths 425
 5.4.1.1 DC optimization 429
 5.4.1.2 AC optimization 430
 5.4.1.3 Balanced optimization 431
 5.4.2 Predicted and Measured Performance 431
 5.4.2.1 Transconductance, output resistance, and voltage gain 435
 5.4.2.2 Frequency response 439
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.2.3 Thermal noise</td>
<td>439</td>
</tr>
<tr>
<td>5.4.2.4 Flicker noise</td>
<td>440</td>
</tr>
<tr>
<td>5.4.2.5 Offset voltage due to local-area mismatch</td>
<td>441</td>
</tr>
<tr>
<td>5.4.2.6 Systematic offset voltage</td>
<td>442</td>
</tr>
<tr>
<td>5.4.2.7 Input and output capacitances</td>
<td>442</td>
</tr>
<tr>
<td>5.4.2.8 Slew rate</td>
<td>442</td>
</tr>
<tr>
<td>5.4.2.9 Input and output voltage ranges</td>
<td>443</td>
</tr>
<tr>
<td>5.4.2.10 Input, 1 dB compression voltage</td>
<td>443</td>
</tr>
<tr>
<td>5.4.2.11 Layout area</td>
<td>444</td>
</tr>
<tr>
<td>5.4.2.12 Tradeoffs in DC accuracy, low-frequency AC accuracy, voltage</td>
<td>446</td>
</tr>
<tr>
<td>gain, and transconductance bandwidth</td>
<td></td>
</tr>
<tr>
<td>5.4.3 Other Optimizations: Ensuring Input Devices Dominate Thermal Noise</td>
<td>447</td>
</tr>
<tr>
<td>5.5 Design Optimization and Resulting Performance for the Cascoded OTAs</td>
<td>448</td>
</tr>
<tr>
<td>5.5.1 Selection of MOSFET Inversion Coefficients and Channel Lengths</td>
<td>448</td>
</tr>
<tr>
<td>5.5.1.1 DC optimization</td>
<td>451</td>
</tr>
<tr>
<td>5.5.1.2 AC optimization</td>
<td>452</td>
</tr>
<tr>
<td>5.5.1.3 Balanced optimization</td>
<td>453</td>
</tr>
<tr>
<td>5.5.2 Predicted and Measured Performance</td>
<td>453</td>
</tr>
<tr>
<td>5.5.2.1 Transconductance, output resistance, and voltage gain</td>
<td>458</td>
</tr>
<tr>
<td>5.5.2.2 Frequency response</td>
<td>461</td>
</tr>
<tr>
<td>5.5.2.3 Thermal noise</td>
<td>462</td>
</tr>
<tr>
<td>5.5.2.4 Flicker noise</td>
<td>463</td>
</tr>
<tr>
<td>5.5.2.5 Offset voltage due to local-area mismatch</td>
<td>464</td>
</tr>
<tr>
<td>5.5.2.6 Input and output capacitances</td>
<td>466</td>
</tr>
<tr>
<td>5.5.2.7 Slew rate</td>
<td>467</td>
</tr>
<tr>
<td>5.5.2.8 Input and output voltage ranges</td>
<td>467</td>
</tr>
<tr>
<td>5.5.2.9 Input, 1 dB compression voltage</td>
<td>468</td>
</tr>
<tr>
<td>5.5.2.10 Layout area</td>
<td>468</td>
</tr>
<tr>
<td>5.5.2.11 Tradeoffs in DC accuracy, low-frequency AC accuracy, voltage</td>
<td>470</td>
</tr>
<tr>
<td>gain, and transconductance bandwidth</td>
<td></td>
</tr>
<tr>
<td>5.5.2.12 Comparison of performance tradeoffs with those of simple OTAs</td>
<td>472</td>
</tr>
<tr>
<td>5.5.3 Other Optimizations: Ensuring Input Devices Dominate Flicker Noise and Local-Area Mismatch</td>
<td>472</td>
</tr>
<tr>
<td>5.5.4 Other Optimizations: Complementing the Design</td>
<td>473</td>
</tr>
<tr>
<td>5.6 Prediction Accuracy for Design Guidance and Optimization</td>
<td>474</td>
</tr>
<tr>
<td>References</td>
<td>476</td>
</tr>
</tbody>
</table>

6 Design of Micropower CMOS Preamplifiers Optimized for Low Thermal and Flicker Noise 477

6.1 Introduction 477
6.2 Using the Lateral Bipolar Transistor for Low-Flicker-Noise Applications 478
6.3 Measures of Preamplifier Noise Performance 479
6.3.1 Thermal-Noise Efficiency Factor 479
6.3.2 Flicker-Noise Area Efficiency Factor 482
6.4 Reported Micropower, Low-Noise CMOS Preamplifiers 483
6.5 MOS Noise versus the Bias Compliance Voltage 486
6.5.1 Transconductance in Saturation 486
6.5.2 Drain–Source Resistance and Transconductance in the Deep Ohmic Region 489
6.5.3 Gate Noise Voltage 491
6.5.3.1 Thermal noise 491
6.5.3.2 Flicker noise 493
CONTENTS

6.5.4 Drain Noise Current 494
 6.5.4.1 Thermal noise 494
 6.5.4.2 Flicker noise 494
6.5.5 Drain Noise Current with Resistive Source Degeneration 496
 6.5.5.1 Bias compliance voltage 496
 6.5.5.2 Thermal noise 497
 6.5.5.3 Flicker noise 500

6.6 Extraction of MOS Flicker-Noise Parameters 504
 6.6.1 Preamplifier Input Devices 504
 6.6.2 Preamplifier Non-Input Devices 506
 6.6.3 Comparisons of Flicker Noise 507

6.7 Differential Input Preamplifier 507
 6.7.1 Description 507
 6.7.2 Circuit Analysis, Performance Optimization, and Predicted Performance 509
 6.7.2.1 Voltage gain 510
 6.7.2.2 Frequency response 511
 6.7.2.3 Thermal noise 511
 6.7.2.4 Thermal noise expressed from DC bias conditions 512
 6.7.2.5 Flicker noise 516
 6.7.2.6 Flicker noise expressed from DC bias conditions 517
 6.7.3 Summary of Predicted and Measured Performance 520
 6.7.3.1 MOSFET design selections 521
 6.7.3.2 Resulting preamplifier performance 525
 6.7.4 Design Improvements 529

6.8 Single-Ended Input Preamplifier 531
 6.8.1 Description 531
 6.8.2 Circuit Analysis, Performance Optimization, and Predicted Performance 532
 6.8.2.1 Voltage gain 533
 6.8.2.2 Frequency response 534
 6.8.2.3 Thermal noise 535
 6.8.2.4 Thermal noise expressed from DC bias conditions 536
 6.8.2.5 Flicker noise 538
 6.8.2.6 Flicker noise expressed from DC bias conditions 539
 6.8.3 Summary of Predicted and Measured Performance 541
 6.8.3.1 MOSFET design selections 541
 6.8.3.2 Resulting preamplifier performance 543
 6.8.4 Design Improvements 547

6.9 Prediction Accuracy for Design Guidance and Optimization 549

6.10 Summary of Low-Noise Design Methods and Resulting Challenges in Low-Voltage Processes 550

References 552

7 Extending Optimization Methods to Smaller-Geometry CMOS Processes and Future Technologies 555

7.1 Introduction 555

7.2 Using the Inversion Coefficient for CMOS Process Independence and for Extension to Smaller-Geometry Processes 556
 7.2.1 Universal g_m/I_D, V_{EFF}, and $V_{DS,sat}$ Characteristics Across CMOS Processes 556
7.2.2 Other Nearly Universal Performance Characteristics Across CMOS Processes 556
7.2.3 Porting Designs Across CMOS Processes 557
7.2.4 Extending Design Methods to Smaller-Geometry Processes 560
7.3 Enhancing Optimization Methods by Including Gate Leakage Current Effects 560
7.4 Using an Inversion Coefficient Measure for Non-CMOS Technologies 561
References 562

Appendix: The Analog CMOS Design, Tradeoffs and Optimization Spreadsheet 565

Index 583