Index

a
- absorption, optical
 - attenuation coefficient, linear 180
- affinity factor, electron 144
- acceptor, ionized 199, 248
- angular momentum operator
 - atomic orbital 98–100
 - spherical harmonics 90–91
 - spatial quantization 90–93
- atom-field interaction 167
- atom-dipole moment 176, 336
- driven two level atom
 - atom dipole 171
 - Rabi flopping formula 170
- resonant interaction 170
- Schrödinger equation 170
- Einstein A coefficient 169
- quantum treatment
 - annihilation/creation operator 171
 - EM field quantization 174
 - number operator 175
 - spontaneous emission 175
- semi-classical treatment 167
- stimulated and spontaneous transitions 168
- electron orbits and standing waves 20
- quantized orbits 19
- quantum transition 19
- Ritz combination rule 18

Boltzmann distribution function 3
- Boltzmann probability factor 4
- equipartition theorem 4
- mobility and conductivity 5
- non-equilibrium distribution function 5
- thermodynamic equilibrium 3

bonding, chemical
- ionic 144–145
- covalent 146
- Van der Waal’s attraction 146–148
- Born-Oppenheimer approximation 152

bound states
- 2D and 1D densities of states 37
- 3D density of states 37
- electrons in solids 33
- energy eigenequation 33
- particle in 3D box 34
- quantum well and wire 38, 40
- boundary conditions 39
- eigenfunctions 40
- subbands

Brillouin zone 69

b
- band, energy
 - band bending
 - equilibrium and under bias 220–221
 - band gap 41
 - band-to-band excitation 209–210
 - conduction/valence bands 231, 232
- subbands 34

BioFET 269

Biot-Savard law 128

Bohr’s theory, hydrogen atom 18

c
- carrier transport 203
- band to band excitation 209
- drift and diffusion currents
 - mobility 204–205
 - diffusion coefficient 205–206
 - Einstein relation 206
- equilibrium and non-equilibrium
- composite semiconductor system 207
- quasi-Fermi level 208
- single semiconductor system 206
carrier transport (contd.)
 – generation and recombination currents 209
 – minority carrier lifetime 214
 – photon flux and e-h pairs 215, 348
 – quantum description 203
 – diffusion coefficient 205
 – mobility 204
 – recombination rate 212
 – steady state and equilibrium 211
 – steady state distribution function 212, 214, 347
 – trap assisted recombination and generation 210
 – trap profile 215, 350
chemical bonding 137
 – expansion coefficients 149, 325
 – Heitler-London theory 149, 326
 – H_2 molecule
 – bonding energy 143
 – Hamiltonian 141
 – Heitler-London theory 142
 – variational principle 142
 – ionic bond 144
 – ionized hydrogen molecule 137
 – bonding and antibonding 140
 – Coulomb interaction integral 139
 – exchange integral 139
 – Hamiltonian of 137
 – overlap integral 138
 – polyatomic molecules and hybridized orbitals 148
 – methane and sp hybridization 148
 – spatial directionality 148
 – Van der Waals attraction 146
 – Van der Waals attractive energy 149, 330
 – classical theories 1
 – Boltzmann transport equation 3
 – Maxwell's equation
 – Ampere's circuital law 6, 7
 – Coulomb's law 6, 7
 – displacement current 7
 – Faraday's law of induction 6, 7
 – plane waves and wave packets 7–9
 – wave equation 7
 – solenoidal 11, 282
 – thermal velocity 11, 280
 – variance 11, 281
Compton scattering 16
Coulomb blockade 60

Debye length 248
degeneracy, quantum states 35
degenerate perturbation theory 109
density
 – carrier 191, 197–200, 206, 221, 225
 – energy 13, 169, 173, 176, 192
 – probability 29, 33, 34, 38–40, 46, 47, 51, 64, 68, 80, 82, 99–111, 124, 139–141, 144
 – of states, 1, 2 and 3D 35–38, 41–43, 193–195, 253
dielectric interface and constant 47, 53
diodes
 – laser 38, 42, 185, 217, 231, 241–242
 – light emitting 231, 240
 – p-n junction 217–228, 231–242
 – photo 242
 – solar cell 235–238, 242
directional coupling of light 51, 52
 – direct tunneling 53
dispersion relation
 – E-k and EM wave 7–9, 172, 179–188, 231
Doppler shift 100
drift diffusion currents
 – diffusion coefficient 203, 205–206
 – diffusion length 205, 223, 224, 225, 235
 – mobility 5–6, 203–205, 246, 257

electron - proton interaction
 – H-atom theory (see hydrogen atom)
 – Bohr's H-atom theory 87, 97
 – Schrödinger treatment 87–102
electron spin
 – electron paramagnetic resonance 117, 131–134, 161, 162
 – spin flip 117, 118, 132, 134, 271
 – $\pi/2$ and π pulses 134
 – spin -orbit coupling and fine structure 127–129
 – singlet and triplet states 120–121, 123
 – Pauli spin matrices 118, 274, 275
 – electron Zeeman effect 129–130
 – weak and strong magnetic field 129, 160
 – two spin 1/2 system 117
 – singlet and triplet states 120–121, 123
 – – He atom 120–125
 – – Slater determinant 119
 – emission of electron and hole 208, 214, 219, 224, 232
EM waves 179
 – atomic susceptibility 184, 189, 341
Index

- density matrix 181
- ensemble averaging 182
- steady state analysis 184
- attenuation and amplification 179
- coupled equations 188, 339
- dispersion 180
- Fabry Perot type cavity 189, 342
- laser device 185
- frequency of operation 188
- laser intensity 187
- laser oscillator 185
- modes of operation 188
- oscillation condition 187
- population inversion 186
- threshold pumping 187
- saturated population inversion 189, 341
energy
 - binding and bound state 33–42, 56, 65, 68, 72, 95, 97, 125
 - bonding 140, 143–145, 147
 - Fermi 193
 - Ionization 20, 97, 122, 125, 126, 198, 199
 - quantization 77
 - zero point energy 78, 147
energy band 63
- dispersion relation 73, 303
- $E-k$ dispersion 67
- Bloch wavefunction 68
- characteristics 68
- forbidden gaps 67
- quantum states 70
- K–P potential
 - Bloch wavefunction 63, 64
 - boundary conditions 65
 - dispersion relation 67
 - secular equation 66
 - Kramer’s rule 73, 301
 - motion of electrons 70
 - resonant tunneling 71
- superlattice structure 73, 303
 - Boltzmann transport 3–6, 14, 102, 105, 158, 167, 168, 192, 193, 203, 249, 260
 - Newton’s and Hamilton’s 1, 2, 23, 28, 173
 - Maxwell’s 6–10, 172, 175
 - Continuity 7, 223
 - Poisson 248, 261
 - Schrödinger 23, 24, 46, 94, 112, 132, 170, 274, 275
 - wave 7, 8, 23–31, 87, 172
equilibrium
 - distribution function
 - Boltzmann 3–6, 102, 192, 203
 - Fermi-Dirac 193, 203, 204, 211, 239
 - Bose-Einstein 193
 - contact 41, 207, 217, 218, 247
 - equipartition theorem 4–5, 206
 - exchange integral 123–124, 138, 139
 - excitation
 - band to band 200, 208–210, 231
 - trap assisted 210, 227
 - excited states 82, 123, 151, 152
 - extrinsic semiconductor 197–200
 - donors and acceptors 197
 - Fermi level 199–200
Faraday law of induction 7, 126, 172
Fermi’s golden rule 113, 114
field effect transistors (FETs) 245, 263
 - bio-sensors 268
 - cross-shell NW 278, 368
 - drain current 261, 362
 - Fermi potentials 262, 364
 - flash EEPROM cell 263
 - memory operation 263
 - NAND and NOR type 263
 - flat band voltage 261, 361
 - floating gate 277, 365
 - ground state energy 277, 365
 - MOSFET 245
 - NWFET 364 (see also silicon nanowire field effect transistor (NWFET))
 - ONO dielectric layer 277, 367
 - PMOS and NMOS 261, 362
 - quantum computing 273
 - advantages 274, 276
 - entanglement 274
 - NOT gate 275
 - Schrödinger equation 276
 - solar cells 266
 - e-h pairs, efficient collection 268
 - multi-junction 267
 - nanowires 267
 - planar solar cells 266
 - spin-FETs 271
 - stacked multi-junction solar cell 277, 367
field emission display 57
Fowler-Nordheim (F-N) tunneling
 - applications
 - EEPROM cell 263–266
 - scanning tunneling microscopy 57, 151–164
 - tunnel FET 245–261
forces
- Coulomb and central force 93, 142
- centrifugal force 19, 96, 99, 125
- London dispersion force 146

forces
- Coulomb and central force 93, 142
- centrifugal force 19, 96, 99, 125
- London dispersion force 146

g
- floating gate 263–265
- gate electrode of FETs 252, 269
- generation of e-h pairs
 - band-to-band 209–210
 - trap assisted 210–214
- ground state 20, 34, 35, 40, 78, 81, 84, 85, 97, 109, 121–123, 125, 131, 138, 140, 142, 144, 146, 147, 160, 161, 199
- group velocity 9, 70

h
- harmonic oscillator (HO) 1, 75
 - classical and quantum oscillator 86, 307
 - 3D eigenfunction 85, 304
 - eigenfunctions 75
 - energy quantization 77
 - ground state energy 78
 - Hermite polynomials 78
 - orthogonality 79
 - uncertainty relation 81
 - energy eigenfunction 85, 303
 - linearly superposed state 81
 - operator treatment 83
 - annihilation operator 84
 - creation operator 84
 - lowering operator 84
 - number operator 84
 - phonons 84
 - raising operator 84
 - recurrence relations 85, 306
 - zero point energy 86, 308

Heitler-London theory 142

Hermit polynomial 78

hydrogen atom
- Bohr's H-atom theory
 - angular momentum quantization 91, 96, 98
 - Bohr radius 19, 97, 109, 198
 - electron orbit and de Broglie wavelength 17–18, 21, 50, 69
 - quantum transition and spectral lines 19, 20
 - Ritz combination rule 18
 - Schrödinger treatment
 - eigenfunction and eigenvalue 90, 91, 94
 - eigenfunctions, angular and radial 91, 98, 100
- atomic orbital and spectroscopy 87, 98, 100, 125, 126, 148
- hierarchy of quantum numbers n, l, m 91, 98, 119, 124, 125, 129, 134, 147, 160

i
- identical particles
 - distinguishable/indistinguishable particles 192, 194

imrefs 209

integrals
- Coulomb 138–139
- Fermi 1/2 195, 196
- overlap and exchange 123–124, 138–139

interaction
- atom–field 167–176
- dipole 167
- EM field - optical media 179–188
- resonant 113, 132, 167, 170, 267, 268, 274

interface
- composite semiconductor 194, 207
- dielectric 47, 53, 60
- junction 218

intrinsic semiconductor 194–197
- intrinsic Fermi level 197

inversion
- channel inversion 246–247, 249, 254–255
- population inversion 179, 185–187

ionic bond 144–145

ionization energy/potential 20, 97, 122, 125, 126, 198, 199

ISFET 269, 270

j
- junction interface
 - in equilibrium 217, 238
 - under bias 220–222, 224

k
- Kramer's rule 73

Kronig-Penny (K-P) potential 63

l
- Laguerre/Legendre polynomials 91, 97, 122
- London dispersion force 146
- laser device
 - laser diode (LD) 38, 42, 185, 217, 231, 241–242
 - light emitting diode (LED) 240
- population inversion, threshold pumping 179, 185–185
- operation intensity 185, 188
- operation frequency 188
- operation modes 188
- light
 - absorption/amplification 231, 237, 268
 - attenuation/gain coefficients 179–179, 184, 233, 239
- coupling with matter 17
- leakage current 252, 259, 261
- lowering operators 86
- Lyman series 18
- Laplacian operator 94
- Cartesian and spherical coordinate frame 88, 95, 153

\textbf{m}
- magnetic moment 126–128, 130, 131, 158, 159, 161, 271–273
- majority carrier concentration 223, 224, 249
- matrices
 - density 181–183, 188
 - Pauli spin 118, 274, 275
 - transfer 54, 55, 207
- Maxwell's equations 6–10, 172, 175
- memory cells, EEPROM 263–265
- molecular spectra 151
 - binding force 333
 - Born approximation 163, 330
 - diatomic molecule 151
 - Born-Oppenheimer approximation 152
 - rotational spectra 154
 - vibrational spectra 155
 - effective spring constant 165, 333
 - flip operators 334
 - hyperfine interaction 159
 - of energy level 159
 - with magnetic field 159
 - Zeeman splitting 160
- mass of vibration 164, 332
- moment of inertia 164, 331
- motion of oscillator 165, 332
- NMR 162
- nuclear spin 158
- vibrational frequency 165, 334
- zero point energy 165, 333, 334
- molecules
 - binding energy 17, 28, 31, 140
 - diatomic 2, 148, 151–158, 164
 - polyatomic 148
- MOSFET 245
- I-V behavior 245
- NMOS, channel inversion 246
- scalability 252
- subthreshold current 251
- surface charge 248
- threshold voltage and ON current 250

\textbf{n}
- nanometerology 57
- NMR and molecular imaging 163–165
- nondegenerate system 26, 107
- carrier concentration 195–197, 200, 223
- quantum states 35–37, 42, 70, 98, 124, 125, 168, 193, 207, 233
- nonvolatile memory cell 265
- normalized wavefunction 97
- n-type MOSFET/NMOS 252
- nuclear magnetic resonance (NMR) 161
- nuclear spin and magnetic moment 126–128, 130, 131, 158–161, 163, 271–273
- number operators 84

\textbf{o}
- occupation factor, electron/hole
 - laser diode 38, 42, 185, 217, 231, 241–242
 - carrier density 191
 - off state, I OFF 251, 259, 272
 - on state, I ON 251, 272
- operators
 - angular momentum 87–89, 117, 128, 154
 - momentum 2, 16, 28, 102
 - annihilation/creation 84–85, 173
 - Hermitian 25–27, 31
 - Laplacian 94
 - lowering/raising 83, 84
 - number 83, 84
 - spin flip 117, 118
- optical excitation
 - optical gain/loss 238, 240, 241
- orbitals, atomic and molecular 99–100, 148–149
- overlap integral 123, 138, 140

\textbf{p}
- Pauli exclusion principle 119, 192
- Pauli spin matrices 118, 274, 275
- perturbation theory 105
 - anharmonic oscillator 115, 314
 - coupled equation 115, 317
 - harmonic electric field 115, 319
 - interaction Hamiltonian 115, 317
 - perturbing Hamiltonians 115, 318
perturbation theory (contd.)
– time-dependent 111
– time-independent 105
phase velocity 8, 9, 184
phonons and photons 83, 84, 192
photoelectric effect 15
pinch-off voltage 251
Planck constant 13, 17
P-N junction diode 217, 231
– charge injection and extraction 221
– depleted approximation 228, 352
– donor and acceptor doping levels 242, 358
– in equilibrium 217
– band bending 217
– built-in potential 220
– carrier profiles 220
– depletion depth 220
– potential energy 218
– space charge field 218
– forward and reverse biases 228, 355
– ideal diode I-V behavior 223
– diffusion length 225
– forward current 223
– reverse current 224
– Shockley theory 223
– junction band bending 228, 351
– junction parameters 228, 351
– light attenuation/amplification 242, 359
– non-ideal I-V behavior
– generation and recombination currents 226
– junction breakdown 227
– optical absorption 231
– attenuation coefficient 233
– Bloch wavefunction 231, 232
– conduction and valence bands 231
– Fermi’s golden rule 232
– optical fiber communication
– advantages 238
– attenuation and gain 239
– laser diodes 241
– LED 240
– photocurrent 234
– photodiode 233
– photovoltaic effect 235
– R_S effect 242, 357
– solar cell 242, 357
– steady state diffusion 242, 356
– Zener breakdown 228, 356
Poisson equation 248
Polysilicon 245, 246
positronium 103
Poynting vector 8
probability
– Boltzmann factor 4, 14, 157, 158, 168, 249, 260
– Density 29, 33, 39, 46, 47, 51, 64, 80, 82, 99, 124, 139, 140
– current density 6, 46–48, 60
– tunneling 51–57, 59–61, 260, 264
q
quantization
– angular momentum/momentum 91, 96, 98
– atomic orbits 20–21
– energy 33, 72, 75–78, 97
– field 171–175
– spatial 87, 90–93
quantum computing 273–277
– quantum entanglement 274, 275, 277
quantum mechanics milestones 13
– Balmer series 285
– blackbody radiation 13
– Compton scattering 16
– de Broglie wavelength 17, 21, 283
– duality of matter 17
– hydrogen atom, Bohr’s theory 18
– electron orbits and standing waves 20
– quantized orbits 19
– Ritz combination rule 18
– photoelectric effect 15, 21, 285
– photon energy calculation 21, 282
– Planck’s theory 21, 284
– quantum of energy 13
– scattered radiation 21, 286
– Schrödinger wave equation 23
quantum numbers, n, l, m 91, 98, 119, 124, 125
quantum well and wire
– bound states (see also bound states)
– energy eigenfunction 43, 290, 291
– ground state energy 43, 291
– scattering of the 1D particle 48
– quasi equilibrium approximation 221
– quasi-Fermi level, electron and hole 209, 221
– quasi neutral region 221–225, 234, 235
r
Rabi flopping formula 170
recombination, e-h pairs
– band to band 191, 200, 203, 208–210, 227, 231
– radiative/nonradiative 210
recombination current 203, 209–214, 226–227
– recombination lifetime 210, 212
– trap-assisted 203, 210–211, 214, 226, 227, 267
reduced probability density 99
reduced mass 94, 145, 147, 154, 164
relaxation time, longitudinal 5, 6, 163, 182, 203, 205
resonant transmission 50
resonant tunneling 53, 71

s
scattering of the 1D particle 45
– F-N tunneling 61, 298
– probability current density 46
– quantum well 48
– reflection and transmission 47
– resonant transmission 50
– Schrödinger equation 60, 294
– square potential barrier 61, 297
– step potential 45
– total reflection 48
– transmission and reflection coefficients 60, 293
– traveling wave representation 60, 294
– tunneling 50
– direct 53
– field emission display 57
– F-N tunneling 53
– nanomechanics 57
– resonant 53
– SET 58
– tunneling probability 61, 299
Schrödinger treatment, H-atom 87
– angular momentum operator 87
– electron-proton interaction 93
– spatial quantization 91
– spherical harmonics 90
Schrödinger wave equation 23
– eigenfunction and eigenvalues
– time-dependent equation 24
– time-independent equation 24
– Hamiltonian operator 23
– bra and ket vectors 24
– postulates 23
– Hermitian operator 31, 288
semiconductor statistics 191
– 1D electron density 201, 345
– 2D electron density 201, 346
– extrinsic semiconductors 197
– Fermi level 199
– Fermi potentials 200
– hole occupation factor 201, 343
– intrinsic semiconductors 194
– electron concentration 194
– Fermi level 197
– hole concentration 196
– intrinsic concentration 196
– thermal equilibrium 194
– non-degenerate statistics 201, 344
– n-type and p-type GaAs 201, 344
– quantum statistics
– bosons 192
– fermions 193
– insulators 191
– metals/conductors 191
– semiconductors 191
silicon nanowire field effect transistor (NWFET) 252
– ballistic NWFET 257
– channel inversion 254
– long channel I-V behavior 255
– n-channel 252
– short channel I-V behavior 256
– SS and thermionic emission 260
– subband spectra 252
– surface charge 253
– tunneling NWFET 260
single electron transistor (SET) 58
– p-n junction 217–228, 231–242, 245, 251, 267
– planar/multi-junction/nanowire 266–268
spin FETs (SFET) 271
– Datta-Das SFET 272
– ON and OFF states 273
– operation principle 271
– technical difficulties 273
– transistor action 272
– fine structure of spectral lines 128–129
steady state
– steady state and equilibrium 211
– steady state distribution function 212
subbands and sublevels
– quantum well 38, 40–42
– quantum wire 42
symmetrized wavefunctions
– anti-symmetrized wavefunctions 120, 123, 124, 141, 142, 144, 149
– singlet and triplet spin states 120–124
thermodynamic equilibrium 3, 168, 194, 203

- blackbody radiation 13–14

time-dependent perturbation theory
- Fermi's golden rule 113
- harmonic interaction 113
- interaction Hamiltonian 111
time-independent perturbation theory 105
- degenerate theory 109
- non-degenerate theory 105
- first order analysis 106
- H-atom polarizability 108
- second order analysis 107
- Stark shift 108
transfer characteristics
- MOSFET I-V behavior 246

transistors
- ballistic and short channel 256–257
- field effect transistor
- MOSFET 245–251
- NWFT 252–259
- tunnel FET 260–261
- NMOS and PMOS 245, 246, 251, 252, 254, 255
- single electron 45, 58–60
- spin FET 271–273
transition
- induced and spontaneous 168–169
- radiative and non-radiative 210, 240
- transition rate
transmission
- transmission coefficient 51
- resonant transmission 45, 48, 50, 51
transport equation
- Boltzmann 3–6, 14, 102, 157, 158, 168, 192, 193, 203, 249, 260
- Quantum 19–20
tunneling
- applications 56–61, 268
- field emission display 57–58
- nanometrology 45
- single electron transistor 45, 58–60
- non-volatile EEPROM cell 263–266
- Fowler-Norheim tunneling 52–53
- direct tunneling 52, 53
- tunneling probability 51–57, 60, 61, 260, 264
two-electron system 118
- fermions and bosons 119
- He-atom 120
- first excited state 123
- ground states 121
- ionization energy 122
- overlap and exchange integrals 123
- singlet and triplet states 120
- multi-electron atoms and periodic table
- electron affinity 125
- electron configuration 124
- ionization energy 125
- Slater determinant 119
ultraviolet catastrophe 13
uncertainty relation
- canonically conjugate variable 2, 28, 173
- in position and momentum 29–30
- in energy and time 30–31
Van der Waals attraction 146
variational principle 142
velocity
- drift velocity 6, 203, 246, 257
- group velocity 9, 70
- phase velocity 8, 9, 184
vibrational motion, molecules 151, 152
- energy level and frequency 156
wave equation
- EM waves
- plane and wave packet 7–10
work function 15, 21, 61
Young's double slit experiment 10
Zener breakdown 227, 228
zero point energy 78, 86, 147, 165