Contents

Contributors XV
Preface XXI
A Personal Foreword XXIII

Part I The Concept of Fragment-based Drug Discovery 1

1 The Role of Fragment-based Discovery in Lead Finding 3
 Roderick E. Hubbard
 1.1 Introduction 3
 1.2 What is FBLD? 4
 1.3 FBLD: Current Practice 5
 1.3.1 Using Fragments: Conventional Targets 5
 1.3.2 Using Fragments: Unconventional Targets 13
 1.4 What do Fragments Bring to Lead Discovery? 14
 1.5 How did We Get Here? 16
 1.5.1 Evolution of the Early Ideas and History 16
 1.5.2 What has Changed Since the First Book was Published in 2006? 16
 1.6 Evolution of the Methods and Their Application Since 2005 19
 1.6.1 Developments in Fragment Libraries 21
 1.6.2 Fragment Hit Rate and Druggability 22
 1.6.3 Developments in Fragment Screening 23
 1.6.4 Ways of Evolving Fragments 23
 1.6.5 Integrating Fragments Alongside Other Lead-Finding Strategies 23
 1.6.6 Fragments Can be Selective 24
 1.6.7 Fragment Binding Modes 25
 1.6.8 Fragments, Chemical Space, and Novelty 27
 1.7 Current Application and Impact 27
 1.8 Future Opportunities 28
 References 29

COPYRIGHTED MATERIAL
2 Selecting the Right Targets for Fragment-Based Drug Discovery 37
 Thomas G. Davies, Harren Jhoti, Puja Pathuri, and Glyn Williams
2.1 Introduction 37
2.2 Properties of Targets and Binding Sites 39
2.3 Assessing Druggability 41
2.4 Properties of Ligands and Drugs 42
2.5 Case Studies 43
 2.5.1 Case Study 1: Inhibitors of Apoptosis Proteins (IAPs) 44
 2.5.2 Case Study 2: HCV-NS3 46
 2.5.3 Case Study 3: PKM2 47
 2.5.4 Case Study 4: Soluble Adenylate Cyclase 49
2.6 Conclusions 50
 References 51

3 Enumeration of Chemical Fragment Space 57
 Jean-Louis Reymond, Ricardo Visini, and Mahendra Awale
3.1 Introduction 57
3.2 The Enumeration of Chemical Space 58
 3.2.1 Counting and Sampling Approaches 58
 3.2.2 Enumeration of the Chemical Universe Database GDB 58
 3.2.3 GDB Contents 59
3.3 Using and Understanding GDB 61
 3.3.1 Drug Discovery 61
 3.3.2 The MQN System 62
 3.3.3 Other Fingerprints 63
3.4 Fragments from GDB 65
 3.4.1 Fragment Replacement 65
 3.4.2 Shape Diversity of GDB Fragments 66
 3.4.3 Aromatic Fragments from GDB 68
3.5 Conclusions and Outlook 68
 Acknowledgment 69
 References 69

4 Ligand Efficiency Metrics and their Use in Fragment Optimizations 75
 György G. Ferenczy and Győrgy M. Keserű
4.1 Introduction 75
4.2 Ligand Efficiency 75
4.3 Binding Thermodynamics and Efficiency Indices 78
4.4 Enthalpic Efficiency Indices 81
4.5 Lipophilic Efficiency Indices 83
4.6 Application of Efficiency Indices in Fragment-Based Drug Discovery Programs 88
4.7 Conclusions 94
 References 95
5 Strategies for Fragment Library Design 101
Justin Bower, Angelo Pugliese, and Martin Drysdale
5.1 Introduction 101
5.2 Aims 102
5.3 Progress 102
5.3.1 BDDP Fragment Library Design: Maximizing Diversity 103
5.3.2 Assessing Three-Dimensionality 103
5.3.3 3DFrag Consortium 104
5.3.4 Commercial Fragment Space Analysis 105
5.3.5 BDDP Fragment Library Design 108
5.3.6 Fragment Complexity 111
5.3.6.1 Diversity-Oriented Synthesis-Derived Fragment-Like Molecules 113
5.4 Future Plans 114
5.5 Summary 116
5.6 Key Achievements 116
References 116

6 The Synthesis of Biophysical Methods In Support of Robust Fragment-Based Lead Discovery 119
Ben J. Davis and Anthony M. Giannetti
6.1 Introduction 119
6.2 Fragment-Based Lead Discovery on a Difficult Kinase 121
6.3 Application of Orthogonal Biophysical Methods to Identify and Overcome an Unusual Ligand: Protein Interaction 127
6.4 Direct Comparison of Orthogonal Screening Methods Against a Well-Characterized Protein System 131
6.5 Conclusions 135
References 136

7 Differential Scanning Fluorimetry as Part of a Biophysical Screening Cascade 139
Duncan E. Scott, Christina Spry, and Chris Abell
7.1 Introduction 139
7.2 Theory 140
7.2.1 Equilibria are Temperature Dependent 140
7.2.2 Thermodynamics of Protein Unfolding 142
7.2.3 Exact Mathematical Solutions to Ligand-Induced Thermal Shifts 143
7.2.4 Ligand Binding and Protein Unfolding Thermodynamics Contribute to the Magnitude of Thermal Shifts 145
7.2.5 Ligand Concentration and the Magnitude of Thermal Shifts 147
7.2.6 Models of Protein Unfolding Equilibria and Ligand Binding 148
7.2.7 Negative Thermal Shifts and General Confusions 150
7.2.8 Lessons Learnt from Theoretical Analysis of DSF 151
7.3 Practical Considerations for Applying DSF in Fragment-Based Approaches 152
7.4 Application of DSF to Fragment-Based Drug Discovery 154
7.4.1 DSF as a Primary Enrichment Technique 154
7.4.2 DSF Compared with Other Hit Identification Techniques 159
7.4.3 Pursuing Destabilizing Fragment Hits 166
7.4.4 Lessons Learnt from Literature Examples of DSF in Fragment-Based Drug Discovery 168
7.5 Concluding Remarks 169
Acknowledgments 169
References 170

8 Emerging Technologies for Fragment Screening 173
Sten Ohlson and Minh-Dao Duong-Thi
8.1 Introduction 173
8.2 Emerging Technologies 175
8.2.1 Weak Affinity Chromatography 175
8.2.1.1 Introduction 175
8.2.1.2 Theory 177
8.2.1.3 Fragment Screening 179
8.2.2 Mass Spectrometry 185
8.2.2.1 Introduction 185
8.2.2.2 Theory 186
8.2.2.3 Applications 186
8.2.3 Microscale Thermophoresis 187
8.2.3.1 Introduction 187
8.2.3.2 Theory 189
8.2.3.3 Applications 189
8.3 Conclusions 189
Acknowledgments 191
References 191

9 Computational Methods to Support Fragment-based Drug Discovery 197
Laurie E. Grove, Sandor Vajda, and Dima Kozakov
9.1 Computational Aspects of FBDD 197
9.2 Detection of Ligand Binding Sites and Binding Hot Spots 198
9.2.1 Geometry-based Methods 199
9.2.2 Energy-based Methods 201
9.2.3 Evolutionary and Structure-based Methods 202
9.2.4 Combination Methods 202
9.3 Assessment of Druggability 203
9.4 Generation of Fragment Libraries 205
9.4.1 Known Drugs 206
9.4.2 Natural Compounds 207
9.4.3 Novel Scaffolds 208
9.5 Docking Fragments and Scoring 209
9.5.1 Challenges of Fragment Docking 209
9.5.2 Examples of Fragment Docking 210
9.6 Expansion of Fragments 212
9.7 Outlook 214
References 214

10 Making FBDD Work in Academia 223
Stacie L. Bulfer, Frantz Jean-Francois, and Michelle R. Arkin
10.1 Introduction 223
10.2 How Academic and Industry Drug Discovery Efforts Differ 225
10.3 The Making of a Good Academic FBDD Project 226
10.4 FBDD Techniques Currently Used in Academia 228
10.4.1 Nuclear Magnetic Resonance 229
10.4.2 X-Ray Crystallography 230
10.4.3 Surface Plasmon Resonance/Biolayer Interferometry 231
10.4.4 Differential Scanning Fluorimetry 232
10.4.5 Isothermal Titration Calorimetry 232
10.4.6 Virtual Screening 232
10.4.7 Mass Spectrometry 233
10.4.7.1 Native MS 233
10.4.7.2 Site-Directed Disulfide Trapping (Tethering) 234
10.4.8 High-Concentration Bioassays 234
10.5 Project Structures for Doing FBDD in Academia 235
10.5.1 Targeting p97: A Chemical Biology Consortium Project 235
10.5.2 Targeting Caspase-6: An Academic–Industry Partnership 236
10.6 Conclusions and Perspectives 239
References 240

11 Site-Directed Fragment Discovery for Allostery 247
T. Justin Rettenmaier, Sean A. Hudson, and James A. Wells
11.1 Introduction 247
11.2 Caspases 249
11.2.1 Tethered Allosteric Inhibitors of Executioner Caspases-3 and -7 249
11.2.2 Tethering Inflammatory Caspase-1 250
11.2.3 Tethered Allosteric Inhibitors of Caspase-5 251
11.2.4 General Allosteric Regulation at the Caspase Dimer Interface 252
11.2.5 Using Disulfide Fragments as “Chemi-Locks” to Generate Conformation-Specific Antibodies 253
11.3 Tethering K-Ras(G12C) 254
11.4 The Master Transcriptional Coactivator CREB Binding Protein 256
11.4.1 Tethering to Find Stabilizers of the KIX Domain of CBP 256
11.4.2 Dissecting the Allosteric Coupling between Binding Sites on KIX 257
11.4.3 Rapid Identification of pKID-Competitive Fragments for KIX 258
11.5 Tethering Against the PIF Pocket of Phosphoinositide-Dependent Kinase 1 (PDK1) 259
11.6 Tethering Against GPCRs: Complement 5A Receptor 261
11.7 Conclusions and Future Directions 263
References 264

12 Fragment Screening in Complex Systems 267
Miles Congreve and John A. Christopher

12.1 Introduction 267
12.2 Fragment Screening and Detection of Fragment Hits 268
12.2.1 Fragment Screening Using NMR Techniques 270
12.2.2 Fragment Screening Using Surface Plasmon Resonance 271
12.2.3 Fragment Screening Using Capillary Electrophoresis 272
12.2.4 Fragment Screening Using Radioligand and Fluorescence-Based Binding Assays 273
12.2.5 Ion Channel Fragment Screening 275
12.3 Validating Fragment Hits 276
12.4 Fragment to Hit 279
12.4.1 Fragment Evolution 280
12.4.2 Fragment Linking 281
12.5 Fragment to Lead Approaches 281
12.5.1 Fragment Evolution 282
12.5.2 Fragment Linking 284
12.6 Perspective and Conclusions 285
Acknowledgments 287
References 287

13 Protein-Templated Fragment Ligation Methods: Emerging Technologies in Fragment-Based Drug Discovery 293
Mike Jaegle, Eric Nawrotzky, Ee Lin Wong, Christoph Arkona, and Jörg Rademann

13.1 Introduction: Challenges and Visions in Fragment-Based Drug Discovery 293
13.2 Target-Guided Fragment Ligation: Concepts and Definitions 294
13.3 Reversible Fragment Ligation 295
13.3.1 Dynamic Reversible Fragment Ligation Strategies 295
13.3.2 Chemical Reactions Used in Dynamic Fragment Ligations 296
13.3.3 Detection Strategies in Dynamic Fragment Ligations 299
13.3.4 Applications of Dynamic Fragment Ligations in FBDD 301
13.4 Irreversible Fragment Ligation 311
13.4.1 Irreversible Fragment Ligation Strategies: Pros and Cons 311
18.10 Tethering Mass Spectometry and X-ray for PDK1 435
18.11 NMR and X-ray Case Study for Abl (Allosteric) 436
18.12 Review of Current Kinase IND’s and Conclusions 437
References 442

19 An Integrated Approach for Fragment-Based Lead Discovery: Virtual, NMR, and High-Throughput Screening Combined with Structure-Guided Design. Application to the Aspartyl Protease Renin. 447
Simon Rüdisser, Eric Vangrevelinghe, and Jürgen Maibaum
19.1 Introduction 447
19.2 Renin as a Drug Target 449
19.3 The Catalytic Mechanism of Renin 451
19.4 Virtual Screening 452
19.5 Fragment-Based Lead Finding Applied to Renin and Other Aspartyl Proteases 455
19.6 Renin Fragment Library Design 464
19.7 Fragment Screening by NMR T1ρ Ligand Observation 469
19.8 X-Ray Crystallography 473
19.9 Renin Fragment Hit-to-Lead Evolution 475
19.10 Integration of Fragment Hits and HTS Hits 476
19.11 Conclusions 479
References 480

Index 487