Index

a

acceptor molecules 108
adsorption 4ff., 71
– desorption hysteresis 5
aerosols 195ff.
– absorption 200ff.
– accumulation mode 241f.
– aethalometer 202
– agglomerates 239, 242
– air particulate matter (PM) 196f., 200f., 268ff.
– atmospheric aging 195
– atmospheric cycling 196
– atmospheric interaction 195f., 198
– black carbon (BC) 199ff.
– brown carbon 202
– carbonaceous components 199ff.
– climate and health effects 198, 205, 216ff.
– cloud condensation and ice nuclei (CCN/IN) 196, 205, 211ff.
– cloud processing 196
– coarse mode 241f.
– collection efficiency curves 240
– combustion 199f., 203
– Cunningham slip correction factor 238, 241
– deliquescence relative humidity (DRH) 213, 215
– diesel exhaust particulate matter (DPM) 211
– dry deposition 196
– efflorescence relative humidity (ERH) 213, 215
– electrical mobility 241
– elemental carbon (EC) 199ff.
– equal settling velocity 239
– exhaust plumes 196
– filter 202
– gas-particle interactions 206ff.
– humic-like substances (HULIS) 205, 208f.
– hygroscopic growth 206, 212ff.
– inertia 239
– integrating-plate techniques 202
– integrating-sphere techniques 202
– interaction with water vapor 212ff.
– kinetic model framework by Pöschl, Rudich and Ammann (PRA) 207f.
– lifetimes 196, 243
– low-volatility organic compounds (LVOCs) 203f.
– macromolecular fraction of water-soluble organic carbon (MWSOC) 200f.
– mass spectrometers 256ff.
– mechanical mobility 238, 241
– morphology 239
– non-volatile organic compounds (NVOCs) 203f.
– nucleation mode 241f.
– organic aerosol (OA) 202
– organic air particulate matter (OPM) 202ff.
– organic carbon (OC) 199ff.
– particle mass concentration 197f.
– particle size 195ff.
– particle size distribution 241ff.
– aerosol particle sizing instrumentation 248ff.
– APS (aerodynamic particle sizer) 249f.
– DMS (differential mobility spectrometer) 249ff.
– EDB (electrical diffusion battery) 249f.
– EEPS (engine exhaust particle sizer) 254
– ELPI (electrical low-pressure impactor) 249f., 258, 261
– FMPS (fast mobility particle sizer) 249f., 254f.
– Moudi 249f.
nano-Moudi 249f.
nano-SMPS (nano-scanning mobility particle sizer) 249f.
OPC (optical particle counter) 249f.
SMPS (scanning mobility particle sizer) 244, 249ff.
aerosol
- phase transition 212f., 215
- photoacoustic spectroscopy 202
- polycyclic aromatic hydrocarbon (PAH) 209ff.
- primary organic aerosol (POA) 202, 204
- secondary organic aerosol (SOA) 203ff.
- semi-volatile organic compounds (SVOCs) 203, 206, 208
- solar radiation 206, 208
- surface-to-volume ratio 129, 206
- terminal settling velocity 238f.
- total carbon (TC) 199ff.
- transformation 195f., 198, 205ff.
- volatile organic compounds (VOCs) 203f., 208
- water-soluble organic carbon (WSOC) 200f.
- wet deposition 196
- yellow carbon 202

Agency for Toxic Substances and Disease Registry (ATSDR) 127
antibacterial 25f.
- activity 39ff.
- effect 38
- evaluation 39
- inactivation 41
- surfaces 48f.
- tiles 113
antifungal growth 33
antimicrobial effect 17, 40f.
antipollution 17
antisooting 33
approach
- bottom-down 7
- bottom-up 4, 182, 184
- top-down 182
automobile
- diesel particulate filter 211
- exhaust 128f., 132, 211, 276, 293
- emission control 129
- gold catalyst 129f.
- three-way catalyst 129, 147
auto-oxidation 25, 28f.

b
batch slurry reactors 81f.
biodegradation 55, 131
Bohr radius 99

Brownian motion 236f.
building block 4

C
CaCO₃ 43, 45f., 49
carbon
- activated 4, 113
- microsphere (CM)-encapsulated 168
- nanofibers 151f.
- spherical mesocarbon microbeds (MCMB) 169f.
carbon nanotubes (CNTs) 4f., 151ff.
- applications 152
- aspect ratio 151f.
- -based composites 170f.
- -oxide composite 6
- catalyst supports 153ff.
- -based composite 170
- copolymerized 5
- electrical conductivity 152
- electrical resistance 4
- functionalized 5, 153
- multi-walled (MWNTs) 5, 152ff.
- purification 5
- sensors 4
- single-wall (SWNTs) 152, 158
- solubility 11
- synthesis 152, 154
- TiO₂ 7, 11
- thermal conductivity 152
- toxicity 11
- water-soluble 6
catalyst deposition 152
- chemical impregnation 152
- colloidal techniques 153
- electrodeposition 152f.
- electroless 152
- microwave techniques 152f.
- sputtering 153
catalyst
- electro- 149ff.
- gold 129f.
- nano- 3f.
- nanoparticulate 3
catalyst poisons
- organosulfur compounds 154
catalyst
- Pt nanoparticle 150ff.
- PtRu bimetallic nanoparticle 150f., 154
- quaternary 151
- ternary 151
- three-way 129, 147
- zeolite 132
catalytic
– activity 2
– converter 129
– dechlorination 132
– decomposition 155
catalytic gold nanoparticles 129f.
– patents 129f.
cementitious materials 33ff.
– burn off 33, 35
– concrete 34
– dye fade 34
– Eco-cements 33, 47f.
– fading rate 33
– photocatalyst 33ff.
– Rhodamine B dye 34
chalking 31, 34ff.
charge transfer rate 164
chemiluminescence detector system 44
chromophores 28
goal 10
coating 10
coatings 3, 11, 30, 34, 43
– automotive 25
– carbonization 168
– efficacy 43
– organic 28
– paint 43, 49
– polymeric 28, 168
– porous 43
– reactive surface 128
– surface 20
– thickness 44
– TiO2 26, 30f., 113ff.
composite 147, 153f., 165ff.
– anode material 165f.
– carbon nanotube-based 170
– cathods 154
– Si nano- 169f.
– Naion 153
contaminants
– chemical destruction 4
– organic 9
– photothermal destruction 4
– toxic 53
contamination monitoring, see nanoparticle characterization techniques
crop fertilization 53

dense non-aqueous phase liquid (DNAPL) 9f.
– contamination 10
Department of Energy (DOE) 53, 158
depollution 42ff.
design for the environment (DFE) 178
dichalkogenides
– layered structure 98f.
– quantum confinement 98f.
– quantum size effect 98

diffusion
– carrier 86
– oxygen 31
dispersion effect 30, 40
DNA technique 128
dye
– cementitious materials 34
– sensitization 81ff.

e
ecotoxicology 11
electrocatalysts 149ff.
– Pt nanoparticles 150f., 164f.
electron-hole 25ff.
– pair 27, 58, 66, 69f., 130
– photinduced 27
– recombination 25, 31, 80, 86, 109, 130f.
– separation 90, 109, 130
– surface trapping 130
electron transfer (ET) 108f.
– acceptor 109, 164
– MoS2, 108
electronic excitation 25
emission 33, 44ff.
energy cost 3
energy efficiency 3
environmental
– applications 3, 10
– contamination 53
– engineering 1
– health and safety (EHS) 188f.
– monitoring 125f.
– nanotechnological technique 9
– pollutants 51, 54
environmental protection
– agency (EPA) 52, 125, 186, 209ff.
– regulations 52, 125
environmental remediation 51ff.
– advantages 68
– applications of photocatalysts 68ff.
– approach 55
– dissolved oxygen 65f.
– economic considerations 57
– recycling 54
– regeneration 54
– risk 1f., 10
environmental remediation techniques 55, 127ff.
– advanced oxidation processes (AOPs) 56
– air stripping 55
– biological degradation 55, 131
– carbon adsorption 55
Index

- end-of-pipe 131
- incineration 55
- oxidation through chlorination 55ff.
- oxidation through ozonization 55
- photocatalysis 131
- photocatalytic degradation 131ff.
- photo-oxidation 56, 131
- sedimentation 55
- semiconductor-based photocatalysis 131
- total mineralization 132
- transfer methods 55
- ultrafiltration 55
- UV photon catalysis 131
- epidemiological study 267ff.
- Air Pollution and Health: a European Approach (APHEA) 272
- cardiovascular disease 275ff.
- design 267, 269
- diseases of the Central Nervous System 279ff.
- entry routes into human body 270ff.
- environmental air pollution 268, 271ff.
- European Prospective Investigation on Cancer and Nutrition (EPIC) 278ff.
- inhalation 270f.
- International Agency for Research on Cancer (IRAC) 279, 282
- Long-Term studies 272ff.
- metabolism 270f.
- National Mortality Morbidity Air Pollution Study (NMMAPS) 272
- Observatoire National des Asthmes Professionnels (ONAP) 284
- odds ratio (OR) 269f.
- particulate air pollution 267ff.
- particulate matter (PM) 268ff.
- relative risk (RR) 269f.
- respiratory disease 276ff.
- risk factor profile deterioration 276
- Short-Term studies 272
- workplaces 281ff.
- exciton 99ff.
- excitons 30f., 69f., 98f.
- bulk 100
- effective mass model (EMM) 70, 100
- hydrogen-like 100
- exhaust 128f.
- aftertreatment 211
- treatment of diesel 130, 211
- treatment of gasoline 130
- catalyst support materials 148, 151ff.
- direct methanol (DMFC) 149ff.
- durability 150f.
- electrical conductivity 151
- electro-osmosis 150
- high temperature 149
- humidification level 150
- low-temperature 148ff.
- membrane electrolyte assembly (MEA) 154
- molten carbonate 149
- nanoparticle catalysts 150f.
- operating temperature 149
- phosphoric acid 149
- polymer electrolyte membrane (PEMFC) 149ff.
- proton exchange membrane 149f.
- solid oxide 149
- fullerene 5, 11, 152
- dispersion state 5
- sorbents 5
- t-type hemisphere 152

g
- gas-phase
- photocatalysis 113
- photoreactors 112
- gas purification of VOC 112
- genetic engineering 128
- genetically modified (MO) crops 188
- graphite
- -like carbon proportion 202
- solid electrolyte interface (SEI) 171
- green
- - chemistry 3
- - design approaches 178
- groundwater
- perchlorate-contaminated 133
- remediation 7ff.

h
- hazardous substances
- chemical classes 127
- transformation 127
- high magnetic gradient separation (HGMS) 6
- hydrocarbon (HC) 148f., 157
- fuel 148f.
- polycyclic aromatic (PAH) 209ff.
- unburned 128f.
- hydrogen 157ff.
- - bio- 3
- carbon nanomaterials 158
- combustion 199
Index

- fuel 148
- pyrolysis 199
- reduction 150
- storage 3, 148, 157ff.
hydrolysis 78
hydroxyl functionality 32
hydroxyl groups 30

i
industrial ecology (IE) 177f.
- application to nanotechnology 178f.
industrial ecology concepts
- corporate social responsibility (CSR) 179, 186ff.
- life cycle assessment (LCA) 179ff.
- material flow analysis (MFA) 179, 184
- substance flow analysis (SFA) 179, 184ff.
industrial ecology framework 177f.
inorganic compounds 26
interception 10
interfacial charge transfer 130
International Council on Nanotechnology (ICON) 189
International Organization for Standardization (ISO) 180, 187
irradiation 34, 37, 47, 64, 80

k
Kelvin equation 213
Köhler theory 213ff.

l
life cycle
- assessment (LCA) 179ff.
- benefits 181f., 184, 187
- engineering (LCE) 178
- impact assessment (LCIA) 180f.
- implications for nanotechnology 180
- inventory (LCI) analysis 180ff.
- performance 184
- product 179, 181f., 184
- stages 179f.
- studies 181
lithium ion batteries 148, 165ff.
- anode nanomaterials 165ff.
- capacity retention 167
- carbon nanotubes 170f.
- discharge capacity 168ff.
- semiconductor electrolyte interface (SEI) 166, 171
- Si nanocomposites 169f.
- Sn nanoparticles 166ff.
- storage capacity 166ff.

m
membranes
- hollow monolithic cylindrical 6
- nanofiltration (NF) 4, 6
- nanoporous alumina 163
- nanoporous polycarbonate 163
- polymer electrolyte, see fuel cells
- polypeptide-based 133
- proton exchange, see fuel cells
- reverse osmosis 6
- silver nanoparticle array 4
- ultrafiltration 6
metals
- depositon 80ff.
- removal 6
methanol reduction 151
mineralization 82, 114, 132
- 4-chlorophenol 82
- total 132
mineralizing 55f.
- complete 56, 59
- partial 55
molecules 4, 125
- bio- 4
- building 125
- self-assembling 125
- toxic 125
MoS$_2$ 54, 72f., 86ff.
- band structures 89f.
- bulk properties 86, 91ff.
- catalytic hydrodesulfurization (HDS) 87, 89, 97
- crystal structure 89, 93, 98
- electronic properties 86f., 89ff.
- high-temperature lubricant 87, 89
- molybdenite 86f.
MoS$_2$ nanocluster 86, 91ff.
- synthesis 92ff.
MoS$_2$
- n-type 89f.
- optical properties 89f., 93ff.
- photocatalytic properties 90ff.
- photocorrosion 88, 90
- quantum size effect 98f.
- semiconductor 89f., 95
- size 88, 91, 93, 95, 98
- solar photoelectrochemical electrode 89
- surface to volume ratio (S/V) 92

n
nanocluster
- crystal structure 93f., 97
- defects 93
- growth 92f., 97f.
Index

– concentration metrics 229f., 232f.
– core-shell 164
nanoparticle detection, see nanoparticle
characterization techniques
nanoparticle detection strategies 259ff.
nanoparticle diameter
– aerodynamic 239
– equivalent 239
– Stokes 239
nanoparticle distribution 298ff.
– ambient air 298f.
– water 299ff.
nanoparticle
– functionalized 10
– inhalation 10
– iron 7ff.
– lifecycle 231
– magnetic 4, 6
nanoparticle measurement techniques, see
nanoparticle characterization techniques
nanoparticle
– mobility 10, 232ff.
– natural 230
– non-magnetic 6
nanoparticle occurrence 233ff.
– air 234
– plant 233
– soil 233
– water 233
– workplace environment 234f.
nanoparticle
– persistence 10
– pristine 10f.
– Sn 166ff.
– sorption capacity 2
– sources 294ff.
nanoparticle synthesis 73, 167f.
– acid-catalyzed hydrolysis 73
– base-catalyzed hydrolysis 73
– gas-phase 73f.
– high-temperature flame hydrolysis 73
– manmade 230
– MoS2 74
– properties 229f.
– sizes 229, 231
– solution-based 73f.
– TiO2 73, 78ff.
nanoparticle
– toxicity 1, 3, 10f., 231, 301f.
– ultrafine particles (UFPs) 229f., 234f., 243,
259, 273ff.
– ZnO 11
nanotechnology applications
– atomic-level synthesis 125
– on-line sensitive sensors 125
nanotechnology firms 188f.
nanotechnology risk 188f., 292ff.
– assessment 294ff.
– communication 294
– identification 292f.
– management 292, 294
– predicted environmental concentration
(PEC) 295f.
– predicted no-effect environmental
concentration (PNEC) 295f.
National Science Foundation (NSF) 302
NOx
– gas detection system 44
– reduction 33, 44ff.
– removal 42, 44f., 129
non-governmental organizations (NGO) 187f.

O2 reduction 151, 153
opacity, see TiO2
organic compounds 5
– dechlorination rate 7
– impurity 109
– removal 6, 26
– volatile, see VOCs
organometallic compounds 5
oxidants 113
ozone 209f.
– decomposition 129
– depletion 205

Paint
– antibacterial 38f.
– acrylic water-based 35
– chalking 35f.
– coatings 43
– composition 35
– degradation 45
– depollution 43
– durability 33, 36
– Eco-paint films 39, 45, 47
– fading 36
– film 33ff.
– gloss loss 33, 36f.
– inorganic 36, 38
– mass loss 33ff.
– matrix 45
– methylene blue-impregnated silicate 36
– organic 35ff.
– photoactivity 33
– photocatalyst 39
– photocatalytic effect 35f., 39, 43
– PVC-based alkyd 33
– shedding 36
– stability 35f.
– self-cleaning effect 33ff.
– translucency 45ff., 49
photoactivity tests
– hydroxyl content 31ff.
– oxygen consumption 32f.
– 2-propanol oxidation 31f.
photoanalysis 53f., 56ff.
– heterogeneous 56, 60
– light-activated 58f.
– MoS$_2$ nanocluster 101ff.
– pentachlorophenol (PCP) 106ff.
– phenol 103ff.
– TiO$_2$ 103ff.
– WS$_2$ nanocluster 101ff.
photocatalyst
– application, see technological applications
– CdS 107
– charge separation 61
– charge transfer 62
– coupled semiconductor 109ff.
– heterogeneous
– light intensity 66
– material properties 71f., 77
– metal dichalcogenides 86
– MoS$_2$ 54, 72f., 86ff.
– nanocluster photostability 72
– nanomaterials 66ff.
– pH of solution 62f.
– photostability 83
– preparation 54
– presence of salts 62ff.
– quantum confinement 68
– semiconductor nanoclusters 68f., 74,
76ff.
– SnO$_2$ 73, 90
– solvent 65f.
– surface chemistry 71f.
– surfactants 64f.
– synthesis 54
– Ta$_3$N$_5$ 83ff.
– TaON 83
– TeS$_2$ 90
– Ti$_2$O 7, 25ff.
– TiO$_2$,Ta$_3$N$_5$ 80, 84
– WS$_2$ 83, 89ff.
– WSe$_2$ 91, 98
– ZnO 83f., 90
photocatalytic 27f., 33
– activity 20, 27f., 54, 62, 80, 91
– bactericidal effect 39ff.
– chemistry 26
– degradation 114, 130
– efficiency 27, 54, 61, 80
– oxidation 57, 80
– paints 35f., 43
– selectivity 62
– size effect 53
photocatalytic surface 17ff.
– chemistry 53
photocatalytic water splitting 57, 59
photochemical cancer treatment 26
photodestruction
– chemical waste 91
– pentachlorophenol (PCP) 106ff.
– phenol 103ff.
photoexcitation 27, 59, 65, 70, 72, 82, 95, 98,
101
photoluminescence (PL) 109, 137
photolysis 206, 208
– laser 59
photolytic degradation 28, 111
photooxidants 210
photo-oxidation 6, 28, 48, 56, 61ff.
– gas-phase 113
– pentachlorophenol (PCP) 108
– reactions 77, 111
photo-oxidative degradation 28
photo-reduction 31, 63, 80ff.
pigmnet 19f., 22ff.
– Calgon milled 41
– concentration 30, 40
– crystallinity 42
– dispersion 30, 40
– effect 25
– form 19
– nanoparticle surface-treated rutile 25
– porosity 41
– rutile 19f., 25
– surface 30f., 42
– surface area 44, 49
– TiO$_2$ 20, 22ff.
platinium surface-catalyzed reaction 129
pollutant
– adsorption 4
– degradation 6f.
– elimination 125f.
– herbizides 53, 56, 133
– identification 126
– inorganic 2, 26, 54
– insecticides 132
– organic 2, 6, 26, 54, 62, 130
– persistent organic (POP) 132
– pesticides 53, 55f., 131ff.
plume 9
quantification 126
reduction 125
removal 26
secondary 55
pollution control 129f.
patents 130
collection
reduction 125
removal 26
secondary 55
pollution control 129f.
– detection 1, 4
– indoor air 127
– prevention 1, 3
– remediation 125
sensing 4, 125
treatment 125
polymer 28f., 30f., 35
– artificial protein 128
cross-link 10
– cross-linked nanoporous 5
degradation 29
matrix 20
– Naion-type 149, 151, 153
– photosensitized oxidation 29
– polar organic 20
– poly(ethylene)oxide (PEO) 165
precursor 110
protein engineering 128
proton
– conductor 149
– hopping 149
purification 4
– air 26, 55
– soil 55
– water 26, 55

q
quantum confinement 68, 70, 98ff.
quantum dots 147
quantum efficiency 112
quantum size effect 27, 68, 71, 98ff.
dichalcogenides 98
– MoS2 98f.
– WSe2 98f.

r
radicals 28ff.
– alkoxy 29
– free 28
– hydroxyl 29
– hydroxy 29
– hydroxyl 6, 27f., 30, 77, 79
– OH 113
– oxygen 29
– perhydroxyl 30
– peroxy 29
– photogenerated 41
reaction
– Eley-Rideal 207
– heterogeneous 203, 207
– Langmuir-Hinshelwood 207, 209
– multiphase 203, 207
– radical-initiated polymerization 204
catalyst 91
– potentials 27, 77, 108
– reactions 25, 91, 109, 130
remediation, see environmental remediation 51ff.
resins 4
Rydberg states 100
Reynolds number 241

s
self-cleanig
– effects 33ff.
– surfaces 33
– tiles 115
semiconductor 6, 68ff.
coupled systems 133
electrolyte interface (SEI) 166, 171
highest occupied molecular orbital (HOMO) 69, 95ff.
direct 69
– lowest occupied molecular orbital (LUMO) 69, 95f., 98
– metal-sulfide 74
– MoS2 72, 77
– light adsorption 77
– optical properties 73
– oxidation potential 77
– photostability 72, 77
– solution-based 74
– surface properties 73
– synthesis 77
– TiO2 6f., 82
– WS2 77
semiconductor
– nanosized 91
– n-type 89f.
– photocatalytic efficiency 130
– surface 130
sensors 4, 133ff.
biosensors 134
chemical 4
detection of heavy metals in water 141f.
electrochemical 4, 134
flow-through Raman scattering 4
gas 138ff.
Index

- mass 135ff.
- novel 140
- optical 137f.
- PEEBLE (probe encapsulated by biologically localized embedding) 137
- real-time chemical composition measurements 140
- solid-state 139
- ultrasensitive detection of pathogens 140f.
- silicon
 - amorphous 159
 - crystalline 159
- microfabrication processes 4
- nanocrystalline porous 137
- polycrystalline 159
- sludge process 56
 - solar cells 3, 148, 159ff.
 - application of nanomaterials 161ff.
 - counter electrodes 164f.
 - dye-sensitized (DSSCs) 148, 161ff.
 - efficiency 159ff.
 - materials 160
 - photovoltaic cells 159
 - spectral irradiance 87
- terrestrial solar irradiance window 161
- spin-orbit splitting 100
- steady-state signal detection 46f.
 - Stokes
 - law 238
 - number 241
 - particle diameter 239
 - supercapacitors 148
 - Superfund sites 52f.
 - superhydrophilicity 26, 116
- surface
 - activity 3
 - depolluting 33
 - -normalized reaction rates 7
 - photocatalytic 17ff.
 - pigment 20
 - reactivity 5
 - self-cleaning 33
 - -to-volume ratio (S/V) 92, 129, 206
 - surface water discharge 52
- surfactants 64f., 102, 163
- TiO$_2$-coated porous filter 114
- TiO$_2$ 7, 17ff.
- activity 25f.
- adsorbance 71, 81
- agglomerates 20ff.
- aggregates 20ff.
- amorphous 78f.
- anatase 17f., 24, 33, 36ff.
- anatase-rutile phase 78f.
- antibacterial 25f.
- antiviral 26
- brookite 17, 79
- coating 30f., 82
- colloids 78
- conventional 22f.
- crystal structure 17f., 79
- dye sensitization 81ff.
- deposition of metals 80ff.
- doping 80
- electronic properties 78f.
- fungicidal 26
- gas-to-particle conversion 23
- films 115f.
- flocs 20f.
- impurities 79
- light scattering 22, 24
- modifications 17, 32
- nanoparticles 22ff.
- nanostructure 78, 163f.
- nitrogen substitution 80, 85
- opacify 17, 19f.
- opalescent effect 25
- optical behavior 24
- particle size 20, 22ff.
- photoactivity 25, 30ff.
- photocatalysis 7, 25ff.
- photocatalytic activity 78, 80
- photophysical 77
- pigmentary 22ff.
- pigments 17ff.
- polymorphs 19
- preparation 22f.
- properties 17ff.
- reflectance 20
- refractive index 17ff.
- rutile 17ff.
- sulfur substitution 80
- surface 79f.
- surface area 23, 27, 80, 82
- synthesis 78ff.
- thin film 27
- transformation 27
- transparent 26f.

t

- technological applications of photocatalysts
 - gas-phase photoreactors 112
 - gas purification of VOCs 112
 - indoor air purification 113f.
 - outdoor air purification 115, 127
 - PVC 116
 - self-cleaning tiles 115
– ultrafine 22ff.
Toxic Release Inventory (TRI) 51f., 127
toxicity data 127
treatment technologies, see environmental remediation
transition metal
– carbides 129
– dichalcogenides 91, 98
– oxicarbides 129
– oxide catalyst system 129

u
ultrasonication 6
UV
– absorption 19f., 25
– efficiency 57
– filter 25
– ozonization 56
– peroxidation 56
– protection 24f.
– radiation 20, 25, 31, 47
– spectrum 25

v
VOCs (volatile organic compounds)
– monitoring 126f.
– reduction 33, 47, 127
– removal 42, 55

w
waste
– detection 125
– heat 149
– munitions 53
– prevention 125
– reduction 3
– treatment 128
wastewater treatment 6
water purification 26, 62
water splitting reaction 59
water treatment 4, 6, 26
– detection of heavy metals 141f.
– drinking water production 6
– ultrasensitive detection of pathogens 140f.
wet-chemical process 22
weatherometer
– Atlas 34, 46
– QUV 36f.

z
zerovalent iron 7f.
– bulk 7
– corrosion 7
– granular 7ff.
– nanoscale (nZVI) 7ff.
– reactive barrier 8f.
– reactivity 7