Contents

Preface

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
</tr>
</tbody>
</table>

1 Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>6</td>
</tr>
<tr>
<td>1.8</td>
<td>10</td>
</tr>
<tr>
<td>1.9</td>
<td>10</td>
</tr>
<tr>
<td>1.10</td>
<td>11</td>
</tr>
<tr>
<td>1.11</td>
<td>13</td>
</tr>
</tbody>
</table>

2 Random Variables and Signals

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>17</td>
</tr>
<tr>
<td>2.1.2</td>
<td>19</td>
</tr>
<tr>
<td>2.1.3</td>
<td>21</td>
</tr>
<tr>
<td>2.2.1</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2</td>
<td>24</td>
</tr>
<tr>
<td>2.2.3</td>
<td>25</td>
</tr>
<tr>
<td>2.2.4</td>
<td>27</td>
</tr>
<tr>
<td>2.3.1</td>
<td>28</td>
</tr>
<tr>
<td>2.3.2</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3</td>
<td>30</td>
</tr>
</tbody>
</table>

3 Matrices and Regression

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>33</td>
</tr>
<tr>
<td>3.2.1</td>
<td>35</td>
</tr>
<tr>
<td>3.2.2</td>
<td>36</td>
</tr>
<tr>
<td>3.2.3</td>
<td>38</td>
</tr>
</tbody>
</table>
Contents

3.2.4 **Singular Value Decomposition** 40
3.2.5 **Block Matrices** 40
3.2.6 **Scalar Matrix Measures** 41
3.2.7 **Vector and Matrix Calculus** 43

3.3 **Least Squares Regression** 44
3.3.1 **Linear Least Squares** 44
3.3.2 **Bias, Weighting and Covariance** 47

References 52

4 **Transforms** 53

4.1 **Continuous Time Fourier Transforms** 53
4.1.1 **Real Fourier Series** 54
4.1.2 **Complex Fourier Series** 55
4.1.3 **The Fourier Integral** 58

4.2 **Discrete Time Fourier Transforms** 59
4.2.1 **Discrete Time Representation** 59
4.2.2 **The Sampling Theorem** 62

4.3 **The Laplace Transform** 66
4.3.1 **The Laplace Transform as a generalization of the Fourier Transform** 66
4.3.2 **Laplace Transform Properties** 67
4.3.3 **Some Laplace Transforms** 68

4.4 **The Z-Transform** 71
4.4.1 **The Z-Transform as a generalization of the Fourier Series** 71
4.4.2 **Z-Transform Properties** 73
4.4.3 **Some Z-Transforms** 73
4.4.4 **Difference Equations and Transfer Function** 75
4.4.5 **Poles and Zeros** 76

References 79

5 **Classical Dynamics** 81

5.1 **Single Degree of Freedom System** 82
5.1.1 **Basic Equation** 82
5.1.2 **Free Decays** 83
5.1.3 **Impulse Response Function** 87
5.1.4 **Transfer Function** 89
5.1.5 **Frequency Response Function** 90

5.2 **Multiple Degree of Freedom Systems** 92
5.2.1 **Free Responses for Undamped Systems** 93
5.2.2 **Free Responses for Proportional Damping** 95
5.2.3 **General Solutions for Proportional Damping** 95
5.2.4 **Transfer Function and FRF Matrix for Proportional Damping** 96
5.2.5 **General Damping** 99

5.3 **Special Topics** 107
5.3.1 **Structural Modification Theory** 107
5.3.2 **Sensitivity Equations** 109
5.3.3 **Closely Spaced Modes** 110
5.3.4 **Model Reduction (SEREP)** 114
5.3.5 **Discrete Time Representations** 116
5.3.6 **Simulation of OMA Responses** 119

References 121
6 Random Vibrations

6.1 General Inputs 123

6.1.1 Linear Systems 123
6.1.2 Spectral Density 125
6.1.3 SISO Fundamental Theorem 128
6.1.4 MIMO Fundamental Theorem 129

6.2 White Noise Inputs 130

6.2.1 Concept of White Noise 130
6.2.2 Decomposition in Time Domain 131
6.2.3 Decomposition in Frequency Domain 134
6.2.4 Zeros of the Spectral Density Matrix 137
6.2.5 Residue Form 139
6.2.6 Approximate Residue Form 140

6.3 Uncorrelated Modal Coordinates 143

6.3.1 Concept of Uncorrelated Modal Coordinates 143
6.3.2 Decomposition in Time Domain 144
6.3.3 Decomposition in Frequency Domain 145

References 147

7 Measurement Technology 149

7.1 Test Planning 149

7.1.1 Test Objectives 149
7.1.2 Field Visit and Site Inspection 150
7.1.3 Field Work Preparation 150
7.1.4 Field Work 151

7.2 Specifying Dynamic Measurements 152

7.2.1 General Considerations 152
7.2.2 Number and Locations of Sensors 154
7.2.3 Sampling Rate 158
7.2.4 Length of Time Series 159
7.2.5 Data Sets and References 160
7.2.6 Expected Vibration Level 162
7.2.7 Loading Source Correlation and Artificial Excitation 164

7.3 Sensors and Data Acquisition 168

7.3.1 Sensor Principles 168
7.3.2 Sensor Characteristics 169
7.3.3 The Piezoelectric Accelerometer 173
7.3.4 Sensors Used in Civil Engineering Testing 175
7.3.5 Data Acquisition 179
7.3.6 Antialiasing 182
7.3.7 System Measurement Range 182
7.3.8 Noise Sources 183
7.3.9 Cabled or Wireless Sensors? 187
7.3.10 Calibration 188
7.3.11 Noise Floor Estimation 191
7.3.12 Very Low Frequencies and Influence of Tilt 194

7.4 Data Quality Assessment 196

7.4.1 Data Acquisition Settings 196
7.4.2 Excessive Noise from External Equipment 197
7.4.3 Checking the Signal-to-Noise Ratio 197
7.4.4 Outliers 197
Contents

7.5 Chapter Summary – Good Testing Practice 198
References 199

8 Signal Processing 201
8.1 Basic Preprocessing 201
 8.1.1 Data Quality 202
 8.1.2 Calibration 202
 8.1.3 Detrending and Segmenting 203
8.2 Signal Classification 204
 8.2.1 Operating Condition Sorting 204
 8.2.2 Stationarity 205
 8.2.3 Harmonics 206
8.3 Filtering 208
 8.3.1 Digital Filter Main Types 209
 8.3.2 Two Averaging Filter Examples 210
 8.3.3 Down-Sampling and Up-Sampling 212
 8.3.4 Filter Banks 213
 8.3.5 FFT Filtering 213
 8.3.6 Integration and Differentiation 214
 8.3.7 The OMA Filtering Principles 216
8.4 Correlation Function Estimation 218
 8.4.1 Direct Estimation 219
 8.4.2 Biased Welch Estimate 221
 8.4.3 Unbiased Welch Estimate (Zero Padding) 222
 8.4.4 Random Decrement 224
8.5 Spectral Density Estimation 229
 8.5.1 Direct Estimation 229
 8.5.2 Welch Estimation and Leakage 229
 8.5.3 Random Decrement Estimation 232
 8.5.4 Half Spectra 233
 8.5.5 Correlation Tail and Tapering 233
References 237

9 Time Domain Identification 239
9.1 Common Challenges in Time Domain Identification 240
 9.1.1 Fitting the Correlation Functions (Modal Participation) 240
 9.1.2 Seeking the Best Conditions (Stabilization Diagrams) 242
9.2 AR Models and Poly Reference (PR) 242
9.3 ARMA Models 244
9.4 Ibrahim Time Domain (ITD) 248
9.5 The Eigensystem Realization Algorithm (ERA) 251
9.6 Stochastic Subspace Identification (SSI) 254
References 258

10 Frequency-Domain Identification 261
10.1 Common Challenges in Frequency-Domain Identification 262
 10.1.1 Fitting the Spectral Functions (Modal Participation) 262
 10.1.2 Seeking the Best Conditions (Stabilization Diagrams) 263
10.2 Classical Frequency-Domain Approach (Basic Frequency Domain) 265
10.3 Frequency-Domain Decomposition (FDD) 266
Contents

10.3.1 FDD Main Idea
10.3.2 FDD Approximations
10.3.3 Mode Shape Estimation
10.3.4 Pole Estimation
10.4 ARMA Models in Frequency Domain

References

11 Applications
11.1 Some Practical Issues
11.1.1 Modal Assurance Criterion (MAC)
11.1.2 Stabilization Diagrams
11.1.3 Mode Shape Merging
11.2 Main Areas of Application
11.2.1 OMA Results Validation
11.2.2 Model Validation
11.2.3 Model Updating
11.2.4 Structural Health Monitoring
11.3 Case Studies
11.3.1 Tall Building
11.3.2 Long Span Bridge
11.3.3 Container Ship

References

12 Advanced Subjects
12.1 Closely Spaced Modes
12.1.1 Implications for the Identification
12.1.2 Implications for Modal Validation
12.2 Uncertainty Estimation
12.2.1 Repeated Identification
12.2.2 Covariance Matrix Estimation
12.3 Mode Shape Expansion
12.3.1 FE Mode Shape Subspaces
12.3.2 FE Mode Shape Subspaces Using SEREP
12.3.3 Optimizing the Number of FE Modes (LC Principle)
12.4 Modal Indicators and Automated Identification
12.4.1 Oversized Models and Noise Modes
12.4.2 Generalized Stabilization and Modal Indicators
12.4.3 Automated OMA
12.5 Modal Filtering
12.5.1 Modal Filtering in Time Domain
12.5.2 Modal Filtering in Frequency Domain
12.5.3 Generalized Operating Deflection Shapes (ODS)
12.6 Mode Shape Scaling
12.6.1 Mass Change Method
12.6.2 Mass-Stiffness Change Method
12.6.3 Using the FEM Mass Matrix
12.7 Force Estimation
12.7.1 Inverting the FRF Matrix
12.7.2 Modal Filtering

References
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8 Estimation of Stress and Strain</td>
<td></td>
</tr>
<tr>
<td>12.8.1 Stress and Strain from Force Estimation</td>
<td>324</td>
</tr>
<tr>
<td>12.8.2 Stress and Strain from Mode Shape Expansion</td>
<td>325</td>
</tr>
<tr>
<td>References</td>
<td>325</td>
</tr>
<tr>
<td>Appendix A Nomenclature and Key Equations</td>
<td>327</td>
</tr>
<tr>
<td>Appendix B Operational Modal Testing of the Heritage Court Tower</td>
<td>335</td>
</tr>
<tr>
<td>B.1 Introduction</td>
<td>335</td>
</tr>
<tr>
<td>B.2 Description of the Building</td>
<td>335</td>
</tr>
<tr>
<td>B.3 Operational Modal Testing</td>
<td>336</td>
</tr>
<tr>
<td>B.3.1 Vibration Data Acquisition System</td>
<td>338</td>
</tr>
<tr>
<td>B.4 Vibration Measurements</td>
<td>338</td>
</tr>
<tr>
<td>B.4.1 Test Sets</td>
<td>341</td>
</tr>
<tr>
<td>B.4.2 Test Results</td>
<td>341</td>
</tr>
<tr>
<td>B.5 Analysis of the HCT Cases</td>
<td>342</td>
</tr>
<tr>
<td>B.5.1 FDD Modal Estimation</td>
<td>342</td>
</tr>
<tr>
<td>B.5.2 SSI Modal Estimation</td>
<td>343</td>
</tr>
<tr>
<td>B.5.3 Modal Validation</td>
<td>343</td>
</tr>
<tr>
<td>References</td>
<td>346</td>
</tr>
<tr>
<td>Appendix C Dynamics in Short</td>
<td>347</td>
</tr>
<tr>
<td>C.1 Basic Equations</td>
<td>347</td>
</tr>
<tr>
<td>C.2 Basic Form of the Transfer and Impulse Response Functions</td>
<td>348</td>
</tr>
<tr>
<td>C.3 Free Decays</td>
<td>348</td>
</tr>
<tr>
<td>C.4 Classical Form of the Transfer and Impulse Response Functions</td>
<td>349</td>
</tr>
<tr>
<td>C.5 Complete Analytical Solution</td>
<td>350</td>
</tr>
<tr>
<td>C.6 Eigenvector Scaling</td>
<td>351</td>
</tr>
<tr>
<td>C.7 Closing Remarks</td>
<td>351</td>
</tr>
<tr>
<td>References</td>
<td>352</td>
</tr>
<tr>
<td>Index</td>
<td>353</td>
</tr>
</tbody>
</table>