Contents

List of Contributors xi
Preface xiii

Introduction: The Why, What and How of Social Systems Engineering 1
César García-Díaz and Camilo Olaya

Part I SOCIAL SYSTEMS ENGINEERING: THE VERY IDEA 11

1 Compromised Exactness and the Rationality of Engineering 13
Steven L. Goldman
1.1 Introduction 13
1.2 The Historical Context 14
1.3 Science and Engineering: Distinctive Rationalities 20
1.4 ‘Compromised Exactness’: Design in Engineering 23
1.5 Engineering Social Systems? 26
References 29

2 Uncertainty in the Design and Maintenance of Social Systems 31
William M. Bulleit
2.1 Introduction 31
2.2 Uncertainties in Simple and Complicated Engineered Systems 33
2.3 Control Volume and Uncertainty 35
2.4 Engineering Analysis and Uncertainty in Complex Systems 37
2.5 Uncertainty in Social Systems Engineering 39
2.6 Conclusions 42
References 42
3 System Farming

Bruce Edmonds

3.1 Introduction

3.2 Uncertainty, Complexity and Emergence

3.2.1 The Double Complexity of CSS

3.3 Science and Engineering Approaches

3.3.1 The Impossibility of a Purely Design-Based Engineering Approach to CSS

3.3.2 Design vs. Adaptation

3.3.3 The Necessity of Strongly Validated Foundations for Design-Based Approaches

3.4 Responses to CSS Complexity

3.4.1 Formal Methods

3.4.2 Statistical Approaches

3.4.3 Self-adaptive and Adaptive Systems

3.4.4 Participatory Approaches and Rapid Prototyping

3.5 Towards Farming Systems

3.5.1 Reliability from Experience Rather Than Control of Construction

3.5.2 Post-Construction Care Rather Than Prior Effort

3.5.3 Continual Tinkering Rather Than One-Off Effort

3.5.4 Multiple Fallible Mechanisms Rather Than One Reliable Mechanism

3.5.5 Monitoring Rather Than Prediction

3.5.6 Disaster Aversion Rather Than Optimizing Performance

3.5.7 Partial Rather Than Full Understanding

3.5.8 Specific Rather Than Abstract Modelling

3.5.9 Many Models Rather Than One

3.5.10 A Community Rather Than Individual Effort

3.6 Conclusion

References

4 Policy between Evolution and Engineering

Martin F.G. Schaffernicht

4.1 Introduction: Individual and Social System

4.2 Policy – Concept and Process

4.3 Human Actors: Perception, Policy and Action

4.4 Artefacts

4.5 Engineering and Evolution: From External to Internal Selection

4.6 Policy between Cultural Evolution and Engineering

4.7 Conclusions and Outlook

Appendix: Brief Overview of the Policy Literature

References

5 ‘Friend’ versus ‘Electronic Friend’

Joseph C. Pitt

References
Part II METHODOLOGIES AND TOOLS

6 Interactive Visualizations for Supporting Decision-Making in Complex Socio-technical Systems

Zhongyuan Yu, Mehrnoosh Oghbaie, Chen Liu, William B. Rouse and Michael J. Pennock

6.1 Introduction 103
6.2 Policy Flight Simulators 104
 6.2.1 Background 104
 6.2.2 Multi-level Modelling 105
 6.2.3 People’s Use of Simulators 106
6.3 Application 1 – Hospital Consolidation 108
 6.3.1 Model Overview 110
 6.3.2 Results and Conclusions 117
6.4 Application 2 – Enterprise Diagnostics 118
 6.4.1 Automobile Industry Application 119
 6.4.2 Interactive Visualization 122
 6.4.3 Experimental Evaluation 125
 6.4.4 Results and Discussion 125
 6.4.5 Implications 128
6.5 Conclusions 128
References 129

7 Developing Agent-Based Simulation Models for Social Systems Engineering Studies: A Novel Framework and its Application to Modelling Peacebuilding Activities

Peer-Olaf Siebers, Grazziela P. Figueredo, Miwa Hirono and Anya Skatova

7.1 Introduction 133
7.2 Background 134
 7.2.1 Simulation 134
 7.2.2 Peacebuilding 135
7.3 Framework 137
 7.3.1 Toolkit Design 138
 7.3.2 Application Design 142
7.4 Illustrative Example of Applying the Framework 143
 7.4.1 Peacebuilding Toolkit Design 143
 7.4.2 Peacebuilding Application Design 149
 7.4.3 Engineering Actions and Interventions in a Peacebuilding Context 153
7.5 Conclusions 155
References 155

8 Using Actor-Network Theory in Agent-Based Modelling

Sandra Méndez-Fajardo, Rafael A. Gonzalez and Ricardo A. Barros-Castro

8.1 Introduction 157
8.2 Agent-Based Modelling 158
Contents

8.2.1 ABM Approaches 159
8.2.2 Agent Interactions 160
8.3 Actor-Network Theory 160
8.4 Towards an ANT-Based Approach to ABM 162
 8.4.1 ANT Concepts Related to ABM............. 162
8.5 Design Guidelines 163
8.6 The Case of WEEE Management 166
 8.6.1 Contextualizing the Case Study 167
 8.6.2 ANT Applied to WEEE Management in Colombia 168
 8.6.3 ANT–ABM Translation Based on the Case Study 172
 8.6.4 Open Issues and Reflections 173
8.7 Conclusions 174
References ... 175

9 Engineering the Process of Institutional Innovation in Contested Territory 179
Russell C. Thomas and John S. Gero
9.1 Introduction 179
9.2 Can Cyber Security and Risk be Quantified? 181
 9.2.1 Schools of Thought 181
9.3 Social Processes of Innovation in Pre-paradigmatic Fields 183
 9.3.1 Epistemic and Ontological Rivalry 183
 9.3.2 Knowledge Artefacts 184
 9.3.3 Implications of Theory 184
9.4 A Computational Model of Innovation 186
 9.4.1 Base Model: Innovation as Percolation 186
 9.4.2 Full Model: Innovation with Knowledge Artefacts 190
 9.4.3 Experiment 190
9.5 Discussion 194
Acknowledgements 194
References ... 195

Part III CASES AND APPLICATIONS 197

10 Agent-Based Explorations of Environmental Consumption in Segregated Networks 199
Adam Douglas Henry and Heike I. Brugger
10.1 Introduction 199
 10.1.1 Micro-drivers of Technology Adoption ... 201
 10.1.2 The Problem of Network Segregation 202
10.2 Model Overview 203
 10.2.1 Synopsis of Model Parameters 204
 10.2.2 Agent Selection by Firms 205
 10.2.3 Agent Adoption Decisions 206
10.3 Results .. 206
 10.3.1 Influence of Firm Strategy on Saturation Times 207
 10.3.2 Characterizing Adoption Dynamics 208
 10.3.3 Incentivizing Different Strategies 210
11 Modelling in the ‘Muddled Middle’: A Case Study of Water Service Delivery in Post-Apartheid South Africa

Jai K. Clifford-Holmes, Jill H. Slinger, Chris de Wet and Carolyn G. Palmer

11.1 Introduction
11.2 The Case Study
11.3 Contextualizing Modelling in the ‘Muddled Middle’ in the Water Sector
11.4 Methods
11.5 Results
11.6 Discussion

Acknowledgements
References

12 Holistic System Design: The Oncology Carinthia Study

Markus Schwaninger and Johann Klocker

12.1 The Challenge: Holistic System Design
12.2 Methodology
12.3 Introduction to the Case Study: Oncology Carinthia
12.3.1 Setting the Stage
12.3.2 Framing: Purpose and Overall Goals (F)
12.3.3 Mapping the System at the Outset (M)
12.3.4 A First Model (M) and Assessment (A)
12.3.5 The Challenge Ahead
12.3.6 A First Take on Design (D): Ascertaining Levers
12.3.7 From Design (D) to Change (C)
12.3.8 Progress in Organizational Design (D)
12.3.9 The Evolution of Oncology Carinthia (C)
12.3.10 Results

12.4 Insights, Teachings and Implications

Acknowledgements
Appendix: Mathematical Representations for Figures 12.5, 12.6 and 12.7
A1: VSM, for any System-in-Focus (one level of recursion; ref. Figure 12.5)
A2: Recursive Structure of the VSM (ref. Figure 12.6)
A3: Virtual Teams (ref. Figure 12.7)
References

13 Reinforcing the Social in Social Systems Engineering – Lessons Learnt from Smart City Projects in the United Kingdom

Jenny O'Connor, Zeynep Gurguc and Koen H. van Dam

13.1 Introduction
13.1.1 Cities as Testbeds
13.1.2 Smart Cities as Artificial Systems
13.1.3 Chapter Structure

13.2 Methodology
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>Case Studies</td>
<td></td>
</tr>
<tr>
<td>13.3.1</td>
<td>Glasgow</td>
<td>271</td>
</tr>
<tr>
<td>13.3.2</td>
<td>London</td>
<td>274</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Bristol</td>
<td>277</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Peterborough</td>
<td>279</td>
</tr>
<tr>
<td>13.4</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>13.4.1</td>
<td>Push/Pull Adoption Model</td>
<td>283</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Civic Engagement</td>
<td>284</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Solutions and Problems</td>
<td>285</td>
</tr>
<tr>
<td>13.4.4</td>
<td>Metrics, Quantification and Optimization</td>
<td>285</td>
</tr>
<tr>
<td>13.4.5</td>
<td>Project Scope and Lifecycles</td>
<td>286</td>
</tr>
<tr>
<td>13.4.6</td>
<td>Collaboration and Multidisciplinarity</td>
<td>286</td>
</tr>
<tr>
<td>13.4.7</td>
<td>Knowledge-Sharing</td>
<td>287</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusion</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>288</td>
</tr>
</tbody>
</table>

Index

References

291