Contents

Series Preface xiii
Preface xv
Acknowledgments xix

Part I THEORY

1 Introduction with a Spring-Mass Frictionless Contact System 3
 1.1 Structural Part – Deflection of Spring-Mass System 3
 1.2 Contact Part – Non-Penetration into Rigid Plane 4
 1.3 Contact Formulations 5
 1.3.1 Lagrange Multiplier Method 5
 1.3.2 Penalty Method 6
 1.3.3 Augmented Lagrangian Method 8

2 General Formulation of a Contact Problem 13
 2.1 Structural Part – Formulation of a Problem in Linear Elasticity 13
 2.1.1 Strong Formulation of Equilibrium 14
 2.1.2 Weak Formulation of Equilibrium 15
 2.2 Formulation of the Contact Part (Signorini’s problem) 17

3 Differential Geometry 23
 3.1 Curve and its Properties 23
 3.1.1 Example: Circle and its Properties 26
 3.2 Frenet Formulas in 2D 28
 3.3 Description of Surfaces by Gauss Coordinates 29
 3.3.1 Tangent and Normal Vectors: Surface Coordinate System 29
 3.3.2 Basis Vectors: Metric Tensor and its Applications 30
 3.3.3 Relationships between Co- and Contravariant Basis Vectors 33
 3.3.4 Co- and Contravariant Representation of a Vector on a Surface 34
 3.3.5 Curvature Tensor and Structure of the Surface 35
Contents

3.4 Differential Properties of Surfaces 37
 3.4.1 The Weingarten Formula 37
 3.4.2 The Gauss–Codazzi Formula 38
 3.4.3 Covariant Derivatives on the Surface 38
 3.4.4 Example: Geometrical Analysis of a Cylindrical Surface 39

4 Geometry and Kinematics for an Arbitrary Two Body Contact Problem 45
 4.1 Local Coordinate System 46
 4.2 Closest Point Projection (CPP) Procedure – Analysis 48
 4.2.1 Existence and Uniqueness of CPP Procedure 49
 4.2.2 Numerical Solution of CPP Procedure in 2D 54
 4.2.3 Numerical Solution of CPP Procedure in 3D 54
 4.3 Contact Kinematics 55
 4.3.1 2D Contact Kinematics using Natural Coordinates s and ζ 58
 4.3.2 Contact Kinematics in 3D Coordinate System 59

5 Abstract Form of Formulations in Computational Mechanics 61
 5.1 Operator Necessary for the Abstract Formulation 61
 5.1.1 Examples of Operators in Mechanics 61
 5.1.2 Examples of Various Problems 62
 5.2 Abstract Form of the Iterative Method 63
 5.3 Fixed Point Theorem (Banach) 64
 5.4 Newton Iterative Solution Method 65
 5.4.1 Geometrical Interpretation of the Newton Iterative Method 66
 5.5 Abstract Form for Contact Formulations 69
 5.5.1 Lagrange Multiplier Method in Operator Form 69
 5.5.2 Penalty Method in Operator Form 71

6 Weak Formulation and Consistent Linearization 73
 6.1 Weak Formulation in the Local Coordinate System 73
 6.2 Regularization with Penalty Method 75
 6.3 Consistent Linearization 75
 6.3.1 Linearization of Normal Part 76
 6.4 Application to Lagrange Multipliers and to Following Forces 79
 6.4.1 Linearization for the Lagrange Multipliers Method 80
 6.4.2 Linearization for Following Forces: Normal Force or Pressure 80
 6.5 Linearization of the Convective Variation δξ 81
 6.6 Nitsche Method 81
 6.6.1 Example: Independence of the Stabilization Parameter 83
Contents

7 Finite Element Discretization 85
7.1 Computation of the Contact Integral for Various Contact Approaches 86
 7.1.1 Numerical Integration for the Node-To-Node (NTN) 86
 7.1.2 Numerical Integration for the Node-To-Segment (NTS) 86
 7.1.3 Numerical Integration for the Segment-To-Analytical Segment (STAS) 86
 7.1.4 Numerical Integration for the Segment-To-Segment (STS) 87
7.2 Node-To-Node (NTN) Contact Element 88
7.3 Nitsche Node-To-Node (NTN) Contact Element 89
7.4 Node-To-Segment (NTS) Contact Element 91
 7.4.1 Closest Point Projection Procedure for the Linear NTS Contact Element 94
 7.4.2 Peculiarities in Computation of the Contact Integral 95
 7.4.3 Residual and Tangent Matrix 96
7.5 Segment-To-Analytical-Surface (STAS) Approach 98
 7.5.1 General Structure of CPP Procedure for STAS Contact Element 98
 7.5.2 Closed form Solutions for Penetration in 2D 100
 7.5.3 Discretization for STAS Contact Approach 102
 7.5.4 Residual and Tangent Matrix 102
7.6 Segment-To-Segment (STS) Mortar Approach 104
 7.6.1 Peculiarities of the CPP Procedure for the STS Contact Approach 106
 7.6.2 Computation of the Residual and Tangent Matrix 106

8 Verification with Analytical Solutions 109
8.1 Hertz Problem 109
 8.1.1 Contact Geometry 110
 8.1.2 Contact Pressure and Displacement for Spheres: 3D Hertz Solution 113
 8.1.3 Contact Pressure and Displacement for Cylinders: 2D Hertz Solution 114
8.2 Rigid Flat Punch Problem 114
8.3 Impact on Moving Pendulum: Center of Percussion 116
8.4 Generalized Euler–Eytelwein Problem 118
 8.4.1 A Rope on a Circle and a Rope on an Ellipse 119

9 Frictional Contact Problems 121
9.1 Measures of Contact Interactions – Sticking and Sliding Case: Friction Law 121
 9.1.1 Coulomb Friction Law 123
Contents

9.2 Regularization of Tangential Force and Return Mapping Algorithm
- **9.2.1 Elasto-Plastic Analogy: Principle of Maximum of Dissipation**
- **9.2.2 Update of Sliding Displacements in the Case of Reversible Loading**

9.3 Weak Form and its Consistent Linearization

9.4 Frictional Node-To-Node (NTN) Contact Element
- **9.4.1 Regularization of the Contact Conditions**
- **9.4.2 Linearization of the Tangential Part for the NTN Contact Approach**
- **9.4.3 Discretization of Frictional NTN**
- **9.4.4 Algorithm for a Local Level Frictional NTN Contact Element**

9.5 Frictional Node-To-Segment (NTS) Contact Element
- **9.5.1 Linearization and Discretization for the NTS Frictional Contact Element**
- **9.5.2 Algorithm for a Local Level NTS Frictional Contact Element**

9.6 NTS Frictional Contact Element

Part II PROGRAMMING AND VERIFICATION TASKS

10 Introduction to Programming and Verification Tasks

11 Lesson 1 Nonlinear Structural Truss – elmt1.f
- **11.1 Implementation**
- **11.2 Examples**
 - **11.2.1 Constitutive Laws of Material**
 - **11.2.2 Large Rotation**
 - **11.2.3 Snap-Through Buckling**

12 Lesson 2 Nonlinear Structural Plane – elmt2.f
- **12.1 Implementation**
- **12.2 Examples**
 - **12.2.1 Constitutive Law of Material**
 - **12.2.2 Large Rotation**

13 Lesson 3 Penalty Node-To-Node (NTN) – elmt100.f
- **13.1 Implementation**
- **13.2 Examples**
 - **13.2.1 Two Trusses**
 - **13.2.2 Three Trusses**
 - **13.2.3 Two Blocks**

14 Lesson 4 Lagrange Multiplier Node-To-Node (NTN) – elmt101.f
- **14.1 Implementation**
Contents

14.2 Examples 168
 14.2.1 Two Trusses 168
 14.2.2 Three Trusses 169

15 Lesson 5 Nitsche Node-To-Node (NTN) – elmt102.f 171
 15.1 Implementation 171
 15.2 Examples 174
 15.2.1 Two Trusses 174
 15.2.2 Three Trusses 174

16 Lesson 6 Node-To-Segment (NTS) – elmt103.f 177
 16.1 Implementation 178
 16.2 Examples 181
 16.2.1 Two Blocks 181
 16.2.2 Two Blocks – Horizontal Position 182
 16.2.3 Two Cantilever Beams – Large Sliding Test 183
 16.2.4 Hertz Problem 183
 16.3 Inverted Contact Algorithm – Following Force 185
 16.3.1 Verification of the Rotational Part – A Single Following Force 186

17 Lesson 7 Segment-To-Analytical-Segment (STAS) – elmt104.f 189
 17.1 Implementation 190
 17.2 Examples 193
 17.2.1 Block and Rigid Surface 193
 17.2.2 Block and Inclined Rigid Surface 194
 17.2.3 Block and Inclined Rigid Surface – different Boundary Condition 195
 17.2.4 Bending Over a Rigid Cylinder 196
 17.3 Inverted Contact Algorithm – General Case of Following Forces 196
 17.3.1 Verification of a Rotational Part – A Single Following Force 198
 17.3.2 Distributed Following Forces – Pressure 199
 17.3.3 Inflating of a Bar 201

18 Lesson 8 Mortar/Segment-To-Segment (STS) – elmt105.f 203
 18.1 Implementation 204
 18.2 Examples 207
 18.2.1 Two Blocks 207
 18.2.2 Block and Inclined Rigid Surface – Different Boundary Condition 208
 18.2.3 Contact Patch Test 209
 18.3 Inverted Contact Algorithm – Following Force 210
 18.3.1 Verification of the Rotational Part – Pressure on the Master Side 211
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Description</th>
<th>File</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Lesson 9 Higher Order Mortar/STS – elmt106.f</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.2.1 Two Blocks</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.2.2 Block and Inclined Rigid Surface – Different Boundary Condition</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Lesson 10 3D Node-To-Segment (NTS) – elmt107.f</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.2.1 Two Blocks – 3D Case</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.2.2 Sliding on a Ramp</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.2.3 Bending Over a Rigid Cylinder</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.2.4 Bending Over a Rigid Sphere</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Lesson 11 Frictional Node-To-Node (NTN) – elmt108.f</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.2.1 Two Blocks – Frictional Case</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.2.2 Frictional Contact Patch Test</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Lesson 12 Frictional Node-To-Segment (NTS) – elmt109.f</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.2.1 Two Blocks</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.2.2 Frictional Contact Patch Test</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.2.3 Block and Inclined Rigid Surface – Different Boundary Condition</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.2.4 Generalized 2D Euler–Eytelwein Problem</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Lesson 13 Frictional Higher Order NTS – elmt110.f</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.2.1 Two Blocks</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.2.2 Block and Inclined Rigid Surface – Different Boundary Condition</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Lesson 14 Transient Contact Problems</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.2.1 Block and Inclined Rigid Surface – Non-Frictional Case</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.2.2 Block and Inclined Rigid Surface – Frictional Case</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.2.3 Moving Pendulum with Impact – Center of Percussion</td>
<td>258</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Appendix A Numerical integration 261
A.1 Gauss Quadrature 262
 A.1.1 Evaluation of Integration Points 262
 A.1.2 Numerical Examples 263

Appendix B Higher Order Shape Functions of Different Classes 265
B.1 General 265
B.2 Lobatto Class 265
 B.2.1 1D Lobatto 265
 B.2.2 2D Lobatto 266
 B.2.3 Nodal FEM Input 269
B.3 Bezier Class 269
 B.3.1 1D Bezier 269
 B.3.2 2D Bezier 270
 B.3.3 Nodal FEM Input 272

References 273

Index 275