Contents

Preface xv
Acknowledgements xvii
Special Contributor xviii
Editor xix
List of Contributors xxi

1. Anaerobic Digestion: Pretreatments of Substrates 1
 Tania Forster-Carneiro, Ricardo Isaac, Montserrat Pérez, and Clarita Schwartz
 1.1 Pretreatments in Anaerobic Digestion Process 2
 1.1.1 Anaerobic Digestion Pretreatments of Substrates 3
 1.2 Physical Pretreatment 6
 1.2.1 Mechanical Pretreatment 7
 1.2.2 Thermal Pretreatment 8
 1.2.3 Ultrasound-assisted Pretreatment 10
 1.3 Chemical Pretreatment 15
 1.4 Biological Pretreatment 17
 1.5 Combined Pretreatment 18
 1.6 Concluding Note 19
 Acknowledgements 20
 References 20

2. Recalcitrance of Lignocellulosic Biomass to Anaerobic Digestion 27
 Mohammad J. Taherzadeh and Azam Jeihanipour
 2.1 Introduction 27
 2.2 Plant Cell Wall Anatomy 28
 2.3 Chemistry of Cell Wall Polymers 30
 2.3.1 Chemistry of Cell Wall Polysaccharides 30
 2.3.1.1 Cellulose 31
 2.3.1.2 (1→3, 1→4)-β-D-Glucans 32

vii
Contents

2.3.1.3 Heteroglucans (Xyloglucans) 33
2.3.1.4 Heteroxylans 34
2.3.1.5 Heteromannans 35
2.3.1.6 Pectic Polysaccharides (Pectins) 36

2.3.2 Cell Wall Proteins 37
2.3.3 Lignin in Plant Cell Walls 38

2.4 Molecular Interactions Between Cell Wall Polymers 39
2.5 Plant Cell Wall Molecular Architecture 40
2.6 Recalcitrance of Plant Cell Wall Cellulose 42
2.7 Reduction of Biomass Recalcitrance 46
2.7.1 Physical and Chemical Pretreatments 48
2.7.2 Bacterial Hydrolysis 49

2.8 Concluding Note 50
References 50

3. The Effect of Physical, Chemical, and Biological Pretreatments of Biomass on its Anaerobic Digestibility and Biogas Production 55
Katerina Stamatelatou, Georgia Antonopoulou, Ioanna Ntaikou, and Gerasimos Lyberatos

3.1 Introduction 56

3.2 Pretreatment Methods for Lignocellulosic Biomass 57
3.2.1 Lignocellulosic Biomass 57
3.2.1.1 Structure of Lignocellulosic Biomass 58
3.2.1.2 Lignocellulosic Feedstocks 60
3.2.2 Pretreatment of Lignocellulosic Biomass 62

3.3 Pretreatment Methods for Sewage Sludge 77
3.3.1 Sludge Pretreatment 78

3.4 Concluding Note 84
References 85

4. Application of Ultrasound Pretreatment for Sludge Digestion 91
Show Kuan Yeow and Wong Lai Peng

4.1 Introduction 91

4.2 Anaerobic Digestion 93

4.3 Overview of Pretreatment Methods for Anaerobic Digestion 95
4.3.1 Thermal Pretreatment 96
4.3.2 Mechanical Pretreatment 96
4.3.3 Chemical Pretreatment 97
4.3.4 Enzyme Pretreatment 99
4.3.5 Irradiation Pretreatment 99
4.3.6 Ultrasound Pretreatment 100
4.4 Fundamental of Ultrasound 100
 4.4.1 Introduction 100
 4.4.2 Basic Theory of Cavitation and Acoustic Cavitation 101
 4.4.3 Acoustic Cavitation Conditions 102
4.5 Bubbles Dynamic 103
 4.5.1 Formation of Bubbles 103
 4.5.2 Behaviour of Acoustic Cavitation Bubbles 105
 4.5.3 Sonoluminescence v/s Sonochemiluminescence 106
4.6 Effects of Ultrasound 106
 4.6.1 Chemical Effects 107
 4.6.2 Physical and Mechanical Effects 107
 4.6.3 Biological Effects 108
4.7 Ultrasound Applications 109
 4.7.1 Ultrasound in Medicine and Therapy 109
 4.7.2 Ultrasound in Science and Technology 110
 4.7.3 Ultrasound in Environmental Applications 111
 4.7.3.1 Air Cleaning 111
 4.7.3.2 Land Remediation 113
 4.7.3.3 Water Remediation 113
 4.7.3.4 Wastewater Treatment 113
4.8 Ultrasonication for Anaerobic Digestion 116
 4.8.1 Mechanisms of Ultrasound Pretreatment 117
 4.8.2 Influencing Factors 118
 4.8.2.1 Sonication Parameters 118
 4.8.2.2 Sludge Characteristics 122
 4.8.2.3 Configuration of Sonicator 123
 4.8.3 Effects of Ultrasound on Sludge 123
4.9 Evaluation on Sludge Disintegration 126
 4.9.1 Physical Evaluation 126
 4.9.2 Chemical Evaluation 127
 4.9.3 Biological Evaluation 129
 4.9.4 Methods to Enhance Ultrasound Efficiency 130
4.10 Conclusions 131
References 132
5. Microwave Sludge Irradiation 137
 Cigdem Eskicioglu and Giampiero Galvagno
 5.1 Introduction 137
 5.2 Microwave Theory 139
 5.2.1 Interaction between Electromagnetic Field and Sample 140
 5.2.2 Microwave Equipment 142
 5.3 Microwave Irradiation for Waste Sludge Treatment 144
 5.3.1 Low Temperature (<100°C) Sludge Pretreatment 144
 5.3.2 High Temperature (>100°C) Sludge Pretreatment 145
 5.4 Industrial Microwave Applications 147
 5.5 Microwave Absorbing Materials and Ionic Liquids 148
 5.6 Sludge Pretreatment Similar to Microwave Irradiation 151
 5.7 Concluding Notes 151
 Acknowledgements 152
 References 152

6. Hydrolytic Enzymes Enhancing Anaerobic Digestion 157
 Teresa Suárez Quiñones, Matthias Plöchl, Katrin Päzolt, Jörn Budde, Robert Kausmann, Edith Nettmann, and Monika Heiermann
 6.1 Introduction 158
 6.1.1 Enzymes 158
 6.1.1.1 Kind of Enzymes 160
 6.1.1.2 Impact of Enzymes 160
 6.1.1.3 Origin of Enzymes 164
 6.1.2 Process of Anaerobic Digestion 166
 6.1.2.1 Biological Process 166
 6.1.2.2 Technical Process 169
 6.2 Where and How can Enzymes be Applied? 170
 6.2.1 Site of Enzyme Application 170
 6.2.1.1 Pre-hydrolytic Phase 170
 6.2.1.2 Pre-digestion Phase 171
 6.2.1.2 Digester 172
 6.2.1.3 Digestate 174
 6.2.2 Anaerobic and Aerobic Conditions of Enzyme Application 175
6.2.3 Optimum Parameters of Enzyme Application 175
6.3 Impact of Enzyme Application 178
 6.3.1 Enhancement of Biogas Production 178
 6.3.2 Secondary Effects 182
 6.3.2.1 Effects on the Availability of the Digestes Contents 182
 6.3.2.2 Effects on the Viscosity of the Digesters Contents 186
 6.3.3 Single Enzyme vs. Mixture of Enzymes 186
 6.3.4 Inhibition of Enzyme Activity 186
 6.3.5 Interaction of Trace Elements and Enzymes 190
6.4 Economic Assessment 191
 6.4.1 Benefits 191
 6.4.2 Cost-benefit Analysis 191
6.5 Concluding Note 192

References 193

7. Oxidizing Agents and Organic Solvents as Pretreatment for Anaerobic Digestion 199

Lise Appels, Jan Van Impe, and Raf Dewil
7.1 Oxidative Pretreatment Methods 199
 7.1.1 Generalities 199
 7.1.2 Wet Air Oxidation 200
 7.1.2.1 Process Description and Generalities 200
 7.1.2.2 Wet Air Oxidation of Lignocellulosic Biomass 202
 7.1.3 Oxidation with Peroxides 205
 7.1.3.1 Hydrogen Peroxide 205
 7.1.3.2 Peracetic Acid 207
 7.1.3.3 Alternative (Novel) Peroxidants 208
 7.1.4 Ozonation 209
7.2 Organic Solvents 210
 7.2.1 Generalities and Working Mechanism 210
 7.2.2 Solvents & Process Conditions 211
 7.2.3 Application as Pretreatment for Anaerobic Digestion 212
7.3 Concluding Note
References

8. Anaerobic Digestion and Biogas Utilization in Greece: Current Status and Perspectives 215
Avraam Karagiannidis, George Perkoulidis, and Apostolos Malamakis
8.1 Assessment of Existing Biogas Installations 215
8.2 Use of Waste Material for Biogas Production 217
8.3 Feedstock Availability and Agricultural Structures 219
8.4 Purification of Biogas for Insertion in the Natural Gas Grid 224
8.5 Biogas Utilization 226
8.6 Concluding Note 227
References 228

Dinesh Surroop and Osman Dina Bégué
9.1 Energy Crisis and Future Challenges 230
9.2 Case Study of Rodrigues 231
9.2.1 The Economy of Rodrigues 231
9.2.2 Energy Sector of Rodrigues 232
9.2.3 Bio-energy in Rodrigues 233
9.3 Rationale of Research Study 233
9.4 Research Methodology 234
9.4.1 Experimental Set-up 235
9.4.2 Substrates for Pilot Anaerobic Digester 237
9.4.3 Pre-Treatment of Substrates 237
9.4.4 Start-up of Anaerobic Digester 238
9.4.5 Analytical Methods 238
9.5 Reactor Design Considerations 241
9.5.1 Operation of Digester System 241
9.5.2 Materials of Construction 244
9.6 Results, Findings and Discussions 247
9.6.1 Substrate Characteristics 247
9.6.2 Characteristics of Biogas 249
9.6.3 Characteristics of Sludge 252
9.6.4 Preliminary Economics of Pilot AD System 255
9.6.5 Economics of the Upscaled Reactor 256
9.7 Conclusions 257
References 258

10. Optimizing and Modeling the Anaerobic Digestion of Lignocellulosic Wastes by Rumen Cultures 259

Zhen-Hu Hu and Han-Qing Yu

10.1 Introduction 260

10.2 Materials and Methods 262
10.2.1 Substrate 262
10.2.2 Microwave Pretreatment 262
10.2.3 Seed Microorganisms and Batch Anaerobic Digestion 263
10.2.4 Experimental Design 264
10.2.5 Analysis and Calculation 264

10.3 Optimizing the Anaerobic Digestion of Microwave-Pretreated Cattail by Rumen Cultures 266

10.3.1 Anaerobic Digestion of Raw Cattail by Rumen Cultures 266

10.3.2 Pretreatment of Cattail by Microwave Irradiation 267
10.3.3 AFM Image Analysis of the Pretreated Cattail 268

10.3.4 X-Ray Diffraction Analysis of the Pretreated Cattail 269

10.3.5 Anaerobic Digestion of the Pretreated Cattail 271

10.3.6 Optimization of Anaerobic Digestion for Microwave Pretreatment Conditions 272

10.3.7 Response Surface Profiles of Microwave Pretreatment Conditions 274

10.4 Modeling the Anaerobic Digestion of Cattail by Rumen Cultures 275

10.4.1 Performance of Continuous-flow Stirred Tank Reactor 275

10.4.2 Model Development and Simulation 276

10.4.3 Fractionation of Cattail for Biodegradation 282

10.4.4 Sensitivity Analysis 283

10.4.5 Model Calibration 284

10.4.6 Model Validation 285

10.5 Concluding Note 287

References 287
11. Pretreatment of Biocatalyst as Viable Option for Sustained Production of Biohydrogen from Wastewater Treatment

S. Venkata Mohan and R. Kannaiah Goud

11.1 Introduction 292
11.2 Pretreatment of Biocatalyst 294
11.2.1 Heat-shock 294
11.2.2 Acid and Alkaline Shock 297
11.2.3 Chemical Treatment 298
11.2.4 Load-shock 299
11.2.5 Oxygen-shock 300
11.2.6 Other Treatment Methods 300
11.3 Combined Pretreatment 300
11.4 Influence of Pretreatment on Wastewater Treatment 302
11.5 Microbial Diversity 303
11.6 Summary and Future Scope 304
Acknowledgements 305
References 305

Index 313