acid dianhydride
 effects in polyimides 281–2
 structures 272
aging of membranes
 activation energy of permeation 300–1
 defined 294
 density changes 299
 gas permeability and selectivity 298–9
 glass transition temperature 295–8
highly sorbing penetrant effects 301–2
implications for practical separations 304
mechanisms and models 296–7
overview 293–4
poly[1-(trimethylsilyl)-1-propyne] 302–3
thickness-dependency 294–5, 297–9
wide-angle X-ray diffraction 299–300
alcohol/water pervaporation 185–7
carbon membranes 351–2
 polyacetylenes 233, 244–5
 polyimides 287
 polymer membranes 359–62, 374
 zeolite membranes 329–30, 331, 374
Arrhenius–vant’ Hoff equations 30
artificial neural network
 predictions 223–4
azeotropic mixtures see under pervaporation
barrer defined 3
bisphenol-A polycarbonate 108
carbon membranes
 flat sheet, self-supported 338
 carbon dioxide/methane separation 339
 flexible from sulfonated polyimides 341–3
 precursors and membranes characterized 340–1
 thermogravimetry–mass spectrometry of precursors 338–9
 hollow fiber, self-supported
cellulosic or phenolic precursors 343
 continuous carbonization process 344
copolyimide precursors 343–4
membrane processes and overview 337–8
pervaporation and vapor permeation 351–2
propylene/propane separation 349, 351
pyrolysis temperature effects 349, 350
 supported membranes and precursors 345
 lignophenol and lignocresol 346–9
 nanoporous SSS™ 345
 phenolic 345–6
 polyamic acid 346
 poly(turffural alcohol) 346
 CHARMM force field 105, 121
 chlorinated hydrocarbons 362–3
 Chung diameter 6, 8, 10
 collision diameter 7–8, 10
 COMPASS force field 50–1
 and fractional accessible free volume 124
 poly[1-(trimethylsilyl)-1-propyne] 123
 poly(2,6-dimethyl-1,4-phenylene oxide) 109–10
 polyimide 113
 polyphosphazene 114–15, 115–16
 polysilane 119
 potential energy equation 50–1
 conformational studies 121
 CONTIN program 194, 195, 196, 203
 critical temperature 10–11, 12
 critical volume 10, 13–14, 203–4
 Cytop® see under perfluoropolymers
 d-spacing and free volume 101
 computation 105
 Darcy’s law 162
 Darken equation 103
 dehumidification 288
density of polymers
 experimental 99
 and membrane aging 297–8, 299
 polyimides 273–4, 276–7
diamine structures 272
diffusion and diffusion coefficient
activation energy 30, 31, 97
computational methods 102–5
critical volume correlations 13
and d-spacing 101
dependency on concentration 22, 23
diffusive jump events 31, 75–7, 97, 103, 160
and free volume 12–13, 16, 100–1
as function of effective molecular diameter 97
glass transition temperature, influence of 14–15, 31–5
Knudsen diffusion 337, 338
microcavity volumes, correlations with penetrant size
choice of parameter for correlation 9–10
and critical volume 13
dependence on 8, 12–14
polyimides 275–6
polymer connector groups 35–6, 211
predictive methods 211–15
artificial neural networks 223–4
computer simulations 224–6
graph theoretical approach 222–3
group contribution methods 215–22
semi-crystalline polymers 101
Solution-Diffusion model 163
from sorption measurements temperature dependence 31, 97
time-lag measurements 96–7
see also under molecular simulation
DREIDING force field 105, 126
poly[1-(trimethylsilyl)-1-propyne] simulation 121–2, 123
polyimide simulation 111, 113
Dual-Mode model 96, 97, 99, 137
Einstein equation 103
electrochromic probes 205–6
enthalpies condensation 11, 12, 203
mixing 203
sorption 11, 12
vaporization 11
ethanol see alcohol
evacuation 358–9
excess volume 100
facilitated transport membranes reviewed
active transport electric field 419
modeling 400–4, 413–16
pH gradient 419
photon field 419–20
temperature effects 421
carbon dioxide separations 427
characteristics of membranes 412
complexing agents Ag(I) 424–5
biological 428
Cu(I) trifluoromethanesulfonate 426
incorporating into film 423
configurations for membranes 416
fixed-site (chained-carrier) membranes 417–18
immobilized liquid membrane 417
solvent swollen polymer film 417
electrodynamic fluids electrode requirements 423
nematic liquid crystals 422
polar solvents 422–3
experimental (time-lag) methods 412–13
hybrid processes 418
ionic liquids 421–2
modeling 400–4, 413–16
active transport 418–19
facilitation factor 414–16
fixed site-carrier membrane 401, 418
hybrid processes 418
screening for potential carriers 416
olefin/paraffin separation 404–5, 423–4
Ag(I) complexation 392–4, 424
Cu(I) trifluoromethanesulfonate 426
effect of water on membrane performance 425
mechanistic studies 424
membrane morphology 424
organic compound separations 428–9
overview 391–2, 411–12
oxygen/nitrogen separation 405, 426–7
silver ion–polymer electrolyte membranes 425–6
stability 412, 416
effect of water 425
fixed-site carrier membranes 417
see also solid-state facilitated transport membranes Fick’s law 1, 72, 163, 187–8
Flory-Huggins equation 18, 22
fluoropolymers see perfluoropolymers
force fields 50–2, 105
free volume 99–102
accessible 61–4, 105, 123, 124
aging of membranes 297–8
blocking effects in polyacetylenes 242–3
computation methods 104–5
definitions defined and discussed 191, 192–3
and diffusion 16–17, 100–1
excess 100
fractional 16, 99–100, 193
and packing density 273
perfluoropolymer permeability 254, 259
polyacetylenes simulation 123–4
table of for selected polymers 99
temperature dependence 31, 100
gas separation
Gas Permeation Units (GPU) 3
size-sieving 12
polymer/penetrant interaction 109
molecular positron probe measurement of 100
hole number density 195–8
electrochromic probes 205–6
inverse gas chromatography 196, 201–4
photochromic probes 205
positron lifetime annihilation spectroscopy 191–9
129Xe NMR methods 192, 200–1
molecular positronium probe simulation 124–5
and permeability/selectivity 6, 7
poly carbonate simulation 109
polymer/penetrant interaction energy 11
size sieving 12–14, 242–3
specific 16, 100
Gas Separation
Parameter 10
Henry’s law 20, 66–7, 96, 97, 102
hole number density 195–8
hydrocarbons 6–7
benzene/cyclohexane 365–8
octane/tri methylpentane 174–6
olefin/paraffin separation 392, 404–5, 423–6
organic liquid/water 362–5
Hyflon16 see under
one-component transport 163–6
concentration-pressure relationships 164–6
molar volume correction factor 166
Solution-Diffusion equations 164
inorganic membranes 307
see also zeolite membranes
intersegmental spacing 101
inverse gas chromatography 201–2
critical volume 203–4
interpretation of results 196, 202–4
partial molar enthalpy of mixing 203
ionization potentials 261–3
jump events 31, 75–7, 97, 103, 160
kinetic diameter 5, 7–9
propane versus butane 9–10
related to diffusion coefficients 8
tabulated 6
Knudsen diffusion 337, 338
Langmuir affinity parameter 18
Langmuir capacity 18, 20–2, 96, 100
Langmuir diffusion coefficient 97
Lattice Fluid model see Non-equilibrium Thermodynamics
Lattice Fluid model
Leonard-Jones collision diameter 7–9
tabulated 6
Leonard-Jones energy parameter 10
liquid/liquid separation see alcohol/water;
organic liquids
MELT program 194
methane
low-pressure solubility isotherms 144–8
methane/butane separation 242–3
methane/hydrogen separation 180–2
microcavities
defined 191
and diffusion coefficient
198–200
sizes in polymers 195, 196,
201, 202
molecular diameter, effective
97, 214
molecular dynamics see under
molecular simulation
molecular mobility 105
molecular shape and size
penetrants 7–10, 12–14, 21,
30–1
effective molecular
diameter 97, 214
polymers 15–18, 30–40
and shape anisotropy 9
and zeolite pore size 373,
374, 384
see also structure of
polymers and transport
molecular simulation
approaches summarized
88–9, 101–6
carbon dioxide in polyimide
matrix 160
cell construction and
equilibration 105–6
cell size 106
choice of ensembles 106
diffusivity
anomalous diffusion 86–7
diffusive jump events 31,
75–7, 97, 103, 160
Greenfield–Theodorus
multidimensional
TST approach 80–6
diffusivity calculation
and macrostate
networks 86
geometric analysis of
accessible volume
82
rate constants for
interstate transitions
84–5
saddle points 82–4
Gusev-Suter transition state
method 77–80
low-temperature matrices and
infrequent jump
events 75–7, 103
molecular dynamics
simulation and self-
diffusivity 73, 102–3
non-equilibrium molecular
dynamics simulation
74–5, 103–4
statistical mechanics of
diffusion 72–3
force fields 50–2, 105
free volume 61–4, 82, 104
d-spacing 105
molecular mobility 105
pair correction functions 105
and positron annihilation
lifetime spectroscopy
62–4
tesselation of space 104
Voorintholt method 104
model configurations
coarse-graining strategies
54–5, 56
force fields 50–2, 105
generating glasses from melts
55–7
molecular dynamics 52–3
molecular mechanics 52
Monte Carlo strategies 53–4
model validation 57
accessible volume 61–2
molecular packing 58
neutron diffraction
58–9
X-ray diffraction 58
positron annihilation lifetime
spectroscopy 62–4
segmental dynamics 59
NMR measurements
59–60
quasielastic neutron
scattering 60–1
thermodynamic properties
cohesive energy 57–8
mass density 57
overview 87–9, 224–6
permeability 97–9
polymer studies 106–7
poly[1-(trimethylsilyl)-1-
propyne] 120–4
poly(2,6-dimethyl-1,4-
phenylene oxide)
109–10
polycarbonates 108–9
polyetherimide 107
polyimides 110–14
polyphosphazenes 114–16
polysilalkylenes 119–20
polysilanes 119–20
polysiloxanes 116–19
polysulfones 107–8
Teflon® 123–4, 126
self-diffusion coefficient
102–3
solubility
and cell size 106
Henry’s constant 66–7, 102
Monte Carlo and TST
simulations 102
sorption equilibria
predictions 64
heat of sorption 67
Henry’s law constant 66–7
high pressure sorption
68–70
low pressure sorption 67–8
sorption isotherms 65–7
Widom insertion 66, 67,
68, 102
resolving problems 70–2
zeolite membranes 331–2
see also Non-equilibrium
Thermodynamic LF
model
molecular size see molecular
shape
molecular volume 203–4, 216
Monte Carlo method 101, 102
poly[1-(trimethylsilyl)-1-
propyne] 122–3
polyphosphazene 115, 116
polysilane simulation 119
solubility coefficient
calculation 66–7, 102
strategies in molecular
simulation 53–4
natural gas 6
Enrichment 255
Non-equilibrium
Thermodynamic
Lattice Fluid model
assumptions, key 138–40
calculations and comparisons
for glassy polymers
correlation of high-
pressure solubility
153–5
correlation of solubility
coefficients 151–3
predicting low-pressure
gas solubility 144–8
predicting low-pressure
solubility coefficients
148–51
discussion and conclusions
155–7
overview 137–8
parameters and data requirements 143–4, 145, 146
and perfluoropolymers 265
olefin/paraffin separation 392, 404–5, 423–6
organic liquid mixtures 355
acetone/chlorinated hydrocarbon separation 365
alcohol/alcohol and alcohol/acetone/chlorinated aliphatic hydrocarbons evaporation 358
ethanol/cyclohexane separation 365
benzene/cyclohexane/hexane separation polymer membranes 381–3
zeolite membranes 329–30, 381–3
alcohol/water separation 185–7
carbon membranes 351–2
polyacetylenes 233, 244–5
polymer membranes 287, 359–62
zeolite membranes 329–30, 331, 374, 377, 386–7
benzene/cyclohexane/hexane separation polymer membranes 365–7
zeolite membranes 329, 382, 383–4
ethanol/cyclohexane separation 365
evaporation 358
temperature-difference control 359
liquid aliphatic hydrocarbons 327–8
olefin/paraffin separation 404–5, 423–6
organic liquid/water polymer membranes 362–4
zeolite membranes 377, 379, 381
permeation equations 357–8, 373–4
pervaporation principles and characteristics 356–7, 373–4
Solution-Diffusion model 357–8
xylene isomer separation 329, 384–5
oxygen/nitrogen separation 254, 284–5
facilitated transport 392, 405, 426–7
packing density 273–4
pair correlation functions 105
PATIT program 194, 195
penetrant diameter (size) 7–10
correlation with diffusion coefficient 9–10
and critical volume 13
dependence of diffusion on 8, 12–14, 30–1
and glass transition temperature 12
perfluoropolymers characteristics and discovery overview 251–2, 266–7
Cytop® 252
gas solubility correlations 257, 258–9
plasticization 259–60
pure gas permeabilities/selectivities 253, 254
structure and properties 253
fluorocarbon/hydrocarbon interactions 260–1
ionization potentials 261–3
non-central force fields 263–6
solution theory 261
helium/hydrogen selectivity 254–5
Hyflon® 252
gas solubility correlations 257, 258
pure gas permeabilities/selectivities 253, 254
structure and properties 253
nitrogen/methane selectivity 255–7
nitrogen/oxygen selectivity 254
plasticization 257–9
solubility correlations, atypical 257–9, 260–1
Teflon® 252
gas solubility correlations 257, 258
molecular simulation 123–4, 126
pure gas permeabilities 253, 254
pure gas selectivities 254
structure and properties 253
permeability and permeability coefficient 99
aging of membranes 298–9, 301–2
bulky trimethylsilyl groups 32–3, 211–12, 232
coefficient defined and described 1–3, 97, 167
computer simulations 224–6
dual-mode model 99
effect of glass transition temperature 14–15, 31–5
and effective solubility coefficient 2, 98
and microcavities 202
penetrant critical volume correlation 13
perfluoropolymers 253
polymer density and chain packing 15–16, 32–5
pressure dependency 22, 24
structure-based prediction 211–15
artificial neural networks 223–4
graph theoretical approach 222–3
group contribution method 215–22
temperature dependence 98–9
units 3
see also selectivity permeability/selectivity trade-off 4–7
facilitated transport membranes 391
free volume effects 6, 12–14
and kinetic diameter 5–6
perfluoropolymers 254–5
polyimides 283–4
size-sieving 12–14
upper bound lines 4–6
permeance 3
permeation activation energy 30, 300–1
measurements in zeolite membranes 321–3
rate (flux) 1, 161, 274–5
permselectivity see selectivity
perturbation

Perturbed-Hard-Sphere-Chain
theory 137, 138, 141, 142–3
solubility calculations and
data comparisons 144–56
pervaporation
carbon membranes 351–2
evaporation 358–9, 385–6
fundamental equations 357
large scale manufacturing
plants 386–7
multi-component transport
alcohol/water mix
described 185–7
choice of permeation
equations 182–4
pervaporation separation
factors 184–5
one-component transport
167–70
flux and pressure 169–70, 171
pressure and concentration
profiles 167–8
transport equations 169
principles and characteristics
356–7, 373–4
Solution-Diffusion model
357–8
see also alcohol/water;
organic liquid
mixtures; zeolite
membranes
photochromic probes 205
physical aging see aging
plasticization 259–60
poly[1-(trimethylsilyl)-1-
propyne] 231, 232
aging of membrane 302–3
conformational studies 121
ethanol/water selectivity 361, 362
free volume representation
123, 201
molecular simulation 107, 120–4
pervaporation
alcohol/water 244–5
organic liquid/water 245–6
polymerization 234–6
prediction of transport
properties 211, 212
selectivity
carbon dioxide/iso-
propane 243
methane/butane 242–3
oxygen/nitrogen 241
vapor/vapor separations
243–4
size-sieving and reverse
selectivity 14, 27, 242
solubility coefficients and
temperature 10–11, 257
poly(2,6-dimethyl-1,4-
phenylene oxide)
simulation 109–10
polyacetylenes
desilylation of membranes
238, 240
gas/gas separation 239–41
oxygen/nitrogen selectivity
240–1
permeability and structure
overview 231–3
poly[1-(trimethylgermyl)-
1-propyne] and
analogues 231–2, 236
polydiarylacetylenes 232, 240
polydiphenylacetylenes
232, 240
pervaporation
alcohol/water 244–5
organic liquid/organic
liquid 246
organic liquid/water 245–6
polymerization 233
catalysts, typical 234–5
cocatalysts 235, 236
mono- and disubstituted
acetylenes 233–4
poly[1-(trimethylsilyl)-1-
propyne] and
analogues 233–6
polydiarylacetylenes and
derivatives 236–8
ring-substituted
polyphenylacetylenes
238–9
solvent effects 235
temperature effects 235
size-sieving and reverse-
selectivity 232–3, 242–3
vapor/gas separation 241
vapor/vapor separation
243–4
see also poly[1-(
(trimethylsilyl)-1-
propyne]
polycarbonates 108
free volume simulation 109
gas transfer simulations
108–9
low-pressure solubility
isotherms of methane
144–8
side-group effects 33–5
polydimethylsiloxane 107, 231
ethanol/water selectivity 361, 362
molecular simulation 116–19
size-sieving 14
solubility coefficients and
temperature 10–11, 257
polyetherimide simulation 107
polyimides
acid dianhydride structures
272
effects of 281–2
aging of membrane 298–9
connector group effects 35–6
diamine structures 272
effects of 282–3
diffusion coefficients 275–6
controlling factors 277–80
gas separation performance
283
carbon dioxide/methane
281–4
carbon dioxide/nitrogen
285–7
hydrogen/methane 284,
287–8
olefins/paraffins 285
oxygen/nitrogen 284–5
water vapor permeation
287–8
group contribution predictive
method 218–25, 285
molecular simulation 110–14, 160
morphology effects 276–7
overview of structure and
properties 271–3
packing density 273
charge-transfer
interactions 273–4
photocrosslinking 287
precursors for carbon
membranes 337–43
selectivity 275, 277, 281–7
solubility coefficients 277–80
controlling factors 280–1
structure-property
relationships 272
polymer structure see structure
of polymers
Positron annihilation lifetime
Polymer-Reference Interaction Site Model (PRISM) 102
polynorbornenes 36, 37
polyphosphazenes simulation 114–16
polysilalkylenes simulation 119–20
polysilanes simulation 119–20
polysiloxanes permeability and glass transition temperature 31–2
simulation 116–19
poly(ethylene fluoride) 252–3
see also perfluoropolymers
polytrifluoropropyl-methylsiloxyane 117
poly(vinylidene fluoride) 252
pore transport model 159–60
positron annihilation lifetime spectroscopy (PALS) 191–2
CONTIN program 194, 195, 196
diffusion coefficient correlated with hole size 198–9
diffusion selectivity 198–200
fractional free volume 193
free volume definitions defined and discussed 192–3
free volume probing methods tabulated 192
hole number density estimation 195–8
MELT program 194
molecular model validation 62–4
PALS method outlined 193–4
PATFIT program 194, 195
positronium atoms and sources 193–4
simulation of molecular positronium probe 124–5
sizes of free volume in glassy polymers 195, 196
spectral data and initial analysis 194–5, 196
positronium atoms 191, 193–4
pressure effects diffusion 22, 23
permeability 22–30
sorption 18–22
transport parameters 18–30
PRISM see Polymer-Reference Interaction Site Model
radial distribution function 105
rejection coefficient 177, 178
reversal osmosis see hyperfiltration
reverse-selectivity see selectivity
seawater and reverse osmosis 176–8
selectivity 3–7, 98
and aging of membrane 298–9
diffusion selectivity versus microcavity size 199–200
diffusion-solution model 175–6, 178–9, 255–6, 275
ethanol/water-selective polymers 362
mixed-gas versus pure-gas effects 24–30
nitrogen/methane separation difficulties discussed 255–7
perfluoropolymers helium/hydrogen 254–5
nitrogen/methane 255–7
oxygen/nitrogen 254
polyacetylenes methane/butane 242–3
oxygen/nitrogen 240–1
vapor/vapor separation 243–4
polyimides 275, 277, 281–5
pressure effects 22–30, 175–6
pressure ratio limits and membrane choice 179–82
reverse selectivity 5, 6–7, 25–9, 232–3
separation factor 3–4, 275
size-sieving and reverse selectivity 5, 6–7, 12–14, 25–9, 232–3, 242
structural effects predicted 212, 213–14
zeolite membranes and hydrocarbons 325–9
see also gas separation selectivity/permeability trade-off see permeability/ selectivity
self-diffusion coefficient in MD simulation 73, 102–3
semi-crystalline polymers 101
separation factor 3, 216–17, 220
separation mechanisms 337–8
side-chains see under structure of polymers
simulation see molecular simulation
size-sieving polymers 5, 6–7, 12–14
perfluoropolymers 258
polyacetylenes 232–3, 242–3
solid-state facilitated transport membranes 391–2
mathematical models concentration fluctuation 402–3
dual-sorption model 400–1
effective diffusion coefficient 401
hopping model versus concentration fluctuation model 403
limited mobility of chained carrier 401
membrane stability 405–6, 407, 408
olefin carrier properties 392
formation and structure of silver polymer electrolytes 392–4
olefin sorption in silver polymer electrolytes 394–5
reversible interaction of silver ions 395
olefin/paraffin separation 392, 403–5
permeabilities and selectivities 405
oxygen carrier properties 395
metalloporphin or Schiff’s base complex 395–6
oxygen solubility and reversibility 396–7
reversible binding kinetics 397–8
oxygen/nitrogen separation 392, 405
trimethylsilyl groups 32–3, 211–12, 232, 237–8
TRIPOS force field 114
United Atom model 51, 105
van de Waals volume 10
vapor/gas separation 241–4
evapor/vapor separation 243–4
vectorial autocorrelation function 103, 105
Voorintholt method 104
Voronoi tesselation 104
water vapor permeation 287–8
Widom particle insertion overcoming problems 70–2
sorption equilibria 66, 67, 68, 102
129Xe NMR methods 192, 200–1
zeolite membranes
A-type membrane
 morphology 376–7
 permeation and pervaporation
 performance 374, 377–8
 preparation and conditions
 315–16, 375–6
 effects on performance
 377–8
 seeding 316, 376
 water/organic liquid separation 374, 377–8
characterization of zeolite films 316
electron micrographs
 318–19, 376, 377, 378, 380
gas adsorption isotherms
 319–20
 orientation 317
 X-ray analysis 316–17
Faujasite 379
hydrophilic membranes
 374–8
membrane defects 320–1
MPI membrane preparation
 309–10, 379–81
calcination and crack formation 314, 380
crystal growth and nucleation
 310, 314, 380
factors affecting membrane growth 315
 seeding 314–15, 380
 support materials,
 preparation and effects 312–13
 synthesis mixture 310–12
 true and colloidal solutions
 309–10
Mordenite 379
morphology
 A-type 376–7
 MFT 380
 T-type 378
organophilic membranes 379–81
overview 307–9, 332–3, 373–4, 387–8
selectivities, permeances and separation factors
 308
permeation
 hydrocarbon gases 325–7
 measurement techniques
 321–3
 small molecules 323–5
 pervaporation
alcohol-water mixtures
 329–30, 331, 386–7
alcohol/ether separation 381–3
aromatic/non-aromatic separation 383–4
integrated systems and esterification 385–6
ketone-water mixtures 329–31
large scale manufacturing plants 386–7
liquid hydrocarbon separations 327–9
membrane performance compared 374, 377, 379, 381, 382
pore geometry and elemental composition 308–9
pore size and molecular diameters 373, 374, 384
potential applications 308, 373
T-type membranes 375–6, 378–9
tetrapropylammonium ion 310–11, 380
type and modeling of transport in membranes
 331–2
X-type membranes 379
 preparation 375–6
 xylene isomer separation 384–5
Y-type membranes 316, 375–6
ZSM-5 membranes 380–1

With thanks to W. F. Farrington for creation of this index.