CONTENTS

Preface xxv

1 Introduction 1
 1.1 Database Concepts, 2
 1.1.1 Data Models, 2
 1.1.2 Database Operations, 2
 1.1.3 Database Management, 3
 1.1.4 DB Clients, Servers, and Environments, 3
 1.2 DBE Architectural Concepts, 4
 1.2.1 Services, 4
 1.2.2 Components and Subsystems, 5
 1.2.3 Sites, 5
 1.3 Archetypical DBE Architectures, 6
 1.3.1 Required Services, 6
 1.3.2 Basic Services, 7
 1.3.3 Expected Services, 8
 1.3.4 Expected Subsystems, 9
 1.3.5 Typical DBMS Services, 10
 1.3.6 Summary Level Diagrams, 11
 1.4 A New Taxonomy, 13
 1.4.1 COS Distribution and Deployment, 13
 1.4.2 COS Closedness or Openness, 14
 1.4.3 Schema and Data Visibility, 15
 1.4.4 Schema and Data Control, 16
 1.5 An Example DDBE, 17
 1.6 A Reference DDBE Architecture, 18
 1.6.1 DDBE Information Architecture, 18
 1.6.2 DDBE Software Architecture, 20
2 Data Distribution Alternatives

2.1 Design Alternatives, 38
 2.1.1 Localized Data, 38
 2.1.2 Distributed Data, 38
 2.1.2.1 Nonreplicated, Nonfragmented, 38
 2.1.2.2 Fully Replicated, 38
 2.1.2.3 Fragmented or Partitioned, 39
 2.1.2.4 Partially Replicated, 39
 2.1.2.5 Mixed Distribution, 39
 2.2 Fragmentation, 39
 2.2.1 Vertical Fragmentation, 40
 2.2.2 Horizontal Fragmentation, 42
 2.2.2.1 Primary Horizontal Fragmentation, 42
 2.2.2.2 Derived Horizontal Fragmentation, 44
 2.2.3 Hybrid Fragmentation, 47
 2.2.4 Vertical Fragmentation Generation Guidelines, 49
 2.2.4.1 Grouping, 49
 2.2.4.2 Splitting, 49
 2.2.5 Vertical Fragmentation Correctness Rules, 62
 2.2.6 Horizontal Fragmentation Generation Guidelines, 62
 2.2.6.1 Minimality and Completeness of Horizontal Fragmentation, 63
 2.2.7 Horizontal Fragmentation Correctness Rules, 66
 2.2.8 Replication, 68
 2.3 Distribution Transparency, 68
 2.3.1 Location Transparency, 68
 2.3.2 Fragmentation Transparency, 68
 2.3.3 Replication Transparency, 69
 2.3.4 Location, Fragmentation, and Replication Transparencies, 69
 2.4 Impact of Distribution on User Queries, 69
 2.4.1 No GDD—No Transparency, 70
 2.4.2 GDD Containing Location Information—Location Transparency, 72
 2.4.3 Fragmentation, Location, and Replication Transparencies, 73
 2.5 A More Complex Example, 73
 2.5.1 Location, Fragmentation, and Replication Transparencies, 75
 2.5.2 Location and Replication Transparencies, 76
2.5.3 No Transparencies, 77
2.6 Summary, 78
2.7 Glossary, 78
References, 79
Exercises, 80

3 Database Control

3.1 Authentication, 84
3.2 Access Rights, 85
3.3 Semantic Integrity Control, 86
 3.3.1 Semantic Integrity Constraints, 88
 3.3.1.1 Relational Constraints, 88
3.4 Distributed Semantic Integrity Control, 94
 3.4.1 Compile Time Validation, 97
 3.4.2 Run Time Validation, 97
 3.4.3 Postexecution Time Validation, 97
3.5 Cost of Semantic Integrity Enforcement, 97
 3.5.1 Semantic Integrity Enforcement Cost in Distributed System, 98
 3.5.1.1 Variables Used, 100
 3.5.1.2 Compile Time Validation, 102
 3.5.1.3 Run Time Validation, 103
 3.5.1.4 Postexecution Time Validation, 104
3.6 Summary, 106
3.7 Glossary, 106
References, 107
Exercises, 107

4 Query Optimization

4.1 Sample Database, 112
4.2 Relational Algebra, 112
 4.2.1 Subset of Relational Algebra Commands, 113
 4.2.1.1 Relational Algebra Basic Operators, 114
 4.2.1.2 Relational Algebra Derived Operators, 116
4.3 Computing Relational Algebra Operators, 119
 4.3.1 Computing Selection, 120
 4.3.1.1 No Index on R, 120
 4.3.1.2 B + Tree Index on R, 120
 4.3.1.3 Hash Index on R, 122
 4.3.2 Computing Join, 123
 4.3.2.1 Nested-Loop Joins, 123
 4.3.2.2 Sort–Merge Join, 124
 4.3.2.3 Hash-Join, 126
4.4 Query Processing in Centralized Systems, 126
 4.4.1 Query Parsing and Translation, 127
 4.4.2 Query Optimization, 128
 4.4.2.1 Cost Estimation, 129
CONTENTS

4.4.2.2 Plan Generation, 133
4.4.2.3 Dynamic Programming, 135
4.4.2.4 Reducing the Solution Space, 141
4.4.3 Code Generation, 144

4.5 Query Processing in Distributed Systems, 145
4.5.1 Mapping Global Query into Local Queries, 146
4.5.2 Distributed Query Optimization, 150
4.5.2.1 Utilization of Distributed Resources, 151
4.5.2.2 Dynamic Programming in Distributed Systems, 152
4.5.2.3 Query Trading in Distributed Systems, 156
4.5.2.4 Distributed Query Solution Space Reduction, 157

4.5.3 Heterogeneous Database Systems, 170
4.5.3.1 Heterogeneous Database Systems Architecture, 170
4.5.3.2 Optimization in Heterogeneous Databases, 171

4.6 Summary, 172
4.7 Glossary, 173
References, 175
Exercises, 178

5 Controlling Concurrency

5.1 Terminology, 183
5.1.1 Database, 183
5.1.1.1 Database Consistency, 184
5.1.2 Transaction, 184
5.1.2.1 Transaction Redefined, 188

5.2 Multitransaction Processing Systems, 189
5.2.1 Schedule, 189
5.2.1.1 Serial Schedule, 189
5.2.1.2 Parallel Schedule, 189
5.2.2 Conflicts, 191
5.2.2.1 Unrepeatable Reads, 191
5.2.2.2 Reading Uncommitted Data, 191
5.2.2.3 Overwriting Uncommitted Data, 192
5.2.3 Equivalence, 192
5.2.4 Serializable Schedules, 193
5.2.4.1 Serializability in a Centralized System, 194
5.2.4.2 Serializability in a Distributed System, 195
5.2.4.3 Conflict Serializable Schedules, 196
5.2.4.4 View Serializable Schedules, 196
5.2.4.5 Recoverable Schedules, 197
5.2.4.6 Cascadeless Schedules, 197
5.2.5 Advanced Transaction Types, 197
5.2.5.1 Sagas, 198
5.2.5.2 ConTracts, 199
CONTENTS

5.2.6 Transactions in Distributed System, 199
5.3 Centralized DBE Concurrency Control, 200
 5.3.1 Locking-Based Concurrency Control Algorithms, 201
 5.3.1.1 One-Phase Locking, 202
 5.3.1.2 Two-Phase Locking, 202
 5.3.1.3 Locking in Relational Databases, 204
 5.3.1.4 Phantom Issue, 206
 5.3.2 Timestamp Concurrency Control Algorithms, 209
 5.3.2.1 Basic TO Concurrency Control Algorithm, 209
 5.3.2.2 Conservative TO Algorithm, 210
 5.3.2.3 Multiversion Concurrency Control Algorithm, 212
 5.3.3 Optimistic Concurrency Control Algorithm, 213
 5.3.4 Concurrency Control in a Real DBMS (Oracle), 214
 5.3.4.1 Oracle Lock Duration, 216
 5.3.4.2 Oracle Lock Modes, 216
 5.3.4.3 Oracle Lock Types, 216
 5.3.4.4 Enforcing Serializability in Oracle, 216
5.4 Concurrency Control in Distributed Database Systems, 222
 5.4.1 Two-Phase Locking in Distributed Systems, 229
 5.4.1.1 Centralized 2PL, 229
 5.4.1.2 Primary Copy 2PL, 230
 5.4.1.3 Distributed 2PL, 230
 5.4.2 Distributed Timestamp Concurrency Control, 232
 5.4.2.1 Conflict Graphs and Transaction Classes, 235
 5.4.3 Distributed Optimistic Concurrency Control, 236
 5.4.4 Federated/Multidatabase Concurrency Control, 237
5.5 Summary, 238
5.6 Glossary, 238
References, 242
Exercises, 243

6 Deadlock Handling 247

 6.1 Deadlock Definition, 247
 6.2 Deadlocks in Centralized Systems, 248
 6.2.1 Deadlock Prevention, 248
 6.2.1.1 The Preacquisition of All Locks Algorithm, 248
 6.2.2 Deadlock Avoidance, 249
 6.2.2.1 The Wait–Die Algorithm, 249
 6.2.2.2 The Wound–Wait Algorithm, 251
 6.2.3 Deadlock Detection and Removal, 252
 6.3 Deadlocks in Distributed Systems, 252
 6.3.1 The Transaction Location Issue, 253
 6.3.2 The Transaction Control Issue, 254
 6.3.3 Distributed Deadlock Prevention, 254
 6.3.4 Distributed Deadlock Avoidance, 255
8.1.4 Transaction States, 300
8.1.5 Database Update Modes, 302
8.1.6 Transaction Log, 302
8.1.7 DBMS Storage Types, 303
8.1.8 Log Contents, 304
 8.1.8.1 Deferred Update Mode Log Records, 304
 8.1.8.2 Immediate Update Mode Log Records, 306
8.2 Undo/Redo and Database Recovery, 308
 8.2.1 Local Recovery Management, 308
 8.2.1.1 Database Buffers and Log Buffers, 309
 8.2.1.2 Log Archival and Database Backups, 311
 8.2.1.3 Backup Types, 311
 8.2.1.4 Rolling a Database Forward, 313
 8.2.1.5 Rolling a Database Back, 313
8.3 Transaction States Revisited, 313
 8.3.1 Deferred Update Transaction Steps, 313
 8.3.2 Immediate Update Transaction Steps, 314
8.4 Database Recovery, 314
 8.4.1 Logging Process, 314
 8.4.2 Recovery Process, 316
 8.4.2.1 Log Information Analysis, 316
 8.4.2.2 Recovery from a Power Failure, 317
 8.4.2.3 Recovery from Disk Failure, 317
 8.4.2.4 Checkpointing, 318
8.5 Other Types of Database Recovery, 319
 8.5.1 Recovery to Current, 319
 8.5.2 Recovery to a Point-in-Time in the Past, 319
 8.5.3 Transaction Recovery, 320
 8.5.3.1 Transaction Recovery Using UNDO Scripts, 320
 8.5.3.2 Transaction Recovery Using REDO Scripts, 321
8.6 Recovery Based on Redo/Undo Processes, 322
8.7 The Complete Recovery Algorithm, 323
8.8 Distributed Commit Protocols, 324
 8.8.1 Architectural Requirements, 325
 8.8.2 Distributed Commit Protocols, 326
 8.8.3 One-Phase Commit, 327
 8.8.4 Two-Phase Commit Protocol, 329
 8.8.4.1 Resiliency of 2PC and Failure Handling, 332
 8.8.4.2 Termination Protocols in 2PC, 336
 8.8.4.3 Recovery Protocols in 2PC, 340
 8.8.4.4 2PC Coordinator Recovery Process, 341
 8.8.4.5 2PC Slave Recovery Process, 342
 8.8.4.6 New Coordinator Election in 2PC, 342
 8.8.4.7 Multiple Site Failures in 2PC, 342
 8.8.4.8 Two-Phase Commit Performance, 343
 8.8.5 Three-Phase Commit Protocol, 345
CONTENTS

8.8.5.1 Resiliency of 3PC, 345
8.8.5.2 Multiple Site Failures in 3PC, 349
8.8.6 Network Partitioning and Quorum-Based Commit Protocol, 349
8.9 Summary, 351
8.10 Glossary, 351
References, 353
Exercises, 354

9 DDBE Security 357

By Bradley S. Rubin

9.1 Cryptography, 357
 9.1.1 Conventional Cryptography, 358
 9.1.1.1 DES/Triple DES, 360
 9.1.1.2 AES, 361
 9.1.1.3 RC4, 361
 9.1.2 Message Digests and Message Authentication Codes, 362
 9.1.2.1 MD5 and SHA, 362
 9.1.3 Public Key Cryptography, 363
 9.1.3.1 RSA and Diffie–Hellman, 364
 9.1.4 Digital Signatures, 364
 9.1.5 Digital Certificates and Certification Authorities, 365
9.2 Securing Communications, 366
 9.2.1 SSL/TLS, 366
 9.2.2 VPN, IPSec, and SSH, 368
9.3 Securing Data, 368
 9.3.1 Authentication and Authorization, 368
 9.3.2 Data Encryption, 369
 9.3.3 Unvalidated Input and SQL Injection, 370
 9.3.3.1 Bypassing the Password for Customer Login, 371
 9.3.3.2 Bypassing the Password for Change Password, 372
 9.3.3.3 Vandalizing the DDBE, 372
 9.3.3.4 Preventing SQL Injection, 374
 9.3.4 Data Inference, 374
 9.3.5 Data Auditing, 375
9.4 Architectural Issues, 375
9.5 A Typical Deployment, 376
9.6 Summary, 377
9.7 Glossary, 377
References, 380
Exercises, 381

10 Data Modeling Overview 383

10.1 Categorizing MLs and DMs, 384
10.1.1 The CLP Taxonomy, 385
10.1.2 The 3LM Taxonomy, 388
10.1.3 Other Categorization Approaches, 389

10.2 The Conceptual Level of the CLP, 390
10.2.1 Conceptual-Level Issues, 390
 10.2.1.1 DBE Design and Implementation Independence Issues, 390
 10.2.1.2 Abstraction Issues, 392
 10.2.1.3 Emphasis Issues, 393
10.2.2 Conceptual-Level Goals, 394
 10.2.2.1 Documenting the DB Requirements, 394
 10.2.2.2 Supporting Forward Engineering, 394
 10.2.2.3 Supporting Reverse Engineering, 395

10.3 Conceptual Modeling Language Examples, 396
10.3.1 The Entity Relationship Model, 396
 10.3.1.1 Construct Review, 396
 10.3.1.2 ERM Rules and Guidelines, 402
 10.3.1.3 Traditional Chen ERD Notation, 405
 10.3.1.4 Crow’s Foot/Feet Notation, 407
 10.3.1.5 Unified Modeling Language, 408

10.4 Working With Data Models, 411
10.4.1 CDMs, 411
 10.4.1.1 Capture the Requirements, 411
 10.4.1.2 Identify Concepts in the Requirements, 412
 10.4.1.3 Group Concepts Together, 412
 10.4.1.4 Remove Ambiguities, 412
 10.4.1.5 Apply Corrections, Conventions, and Standards, 413
10.4.2 LDMs, 413
 10.4.2.1 Purpose, 413
 10.4.2.2 Steps to Create LDMs, 414
10.4.3 PDMs, 415
 10.4.3.1 Purpose, 415
 10.4.3.2 Steps to Create PDMs, 416

10.5 Using Multiple Types of Modeling, 416
10.5.1 Conversion to Multiple Models, 417
10.5.2 Forward Engineering, 417
10.5.3 Reverse Engineering, 418

10.6 Summary, 418
10.7 Glossary, 419
References, 421
Exercises, 422

11 Logical Data Models 425

11.1 The RDM, 426
 11.1.1 Nomenclature, 426
 11.1.1.1 Relations, Tuples, and Domains, 427
11.1.2 Rules for Forward Engineering, 429
 11.1.2.1 Forward Generation of ATs, 429
 11.1.2.2 Forward Generation of RTs, 433
 11.1.2.3 Forward Generation of ETs, 433
 11.1.2.4 Forward Generation of ITs, 434

11.1.3 Rules for Reverse Engineering, 435

11.1.4 Special Considerations, 435
 11.1.4.1 Normal Forms, 436
 11.1.4.2 Second Normal Form, 436
 11.1.4.3 Third Normal Form and Beyond, 436

11.2 The Network Data Model, 436
 11.2.1 Nomenclature, 437
 11.2.1.1 Records, Data Items, and Record Types, 437
 11.2.1.2 Set Types, 437
 11.2.1.3 Data Storage and Navigation, 438
 11.2.2 Rules for Forward Engineering, 438
 11.2.2.1 Forward Generation of ATs, 438
 11.2.2.2 Forward Generation of RTs, 438
 11.2.2.3 Forward Generation of ETs, 439
 11.2.2.4 Forward Generation of ITs, 439
 11.2.3 Rules for Reverse Engineering, 440
 11.2.4 Special Considerations, 440

11.3 The Hierarchical Data Model, 440
 11.3.1 Nomenclature, 441
 11.3.1.1 Records, Fields, and Record Types, 441
 11.3.1.2 Parent–Child Association and Link Types, 441
 11.3.1.3 Hierarchies, 441
 11.3.1.4 Virtual Record Types and Virtual Link Types, 441
 11.3.2 Rules for Forward Engineering, 442
 11.3.2.1 Forward Generation of ATs, 442
 11.3.2.2 Forward Generation of RTs, 442
 11.3.2.3 Forward Generation of ETs, 442
 11.3.2.4 Forward Generation of ITs, 442
 11.3.3 Rules for Reverse Engineering, 442
 11.3.4 Special Considerations, 443

11.4 The OODM, 443
 11.4.1 Nomenclature, 443
 11.4.1.1 Properties and Methods, 443
 11.4.1.2 Classes and Class Inheritance, 444
 11.4.1.3 Objects and Object Identifiers, 444
 11.4.1.4 Navigation and Extents, 444
 11.4.2 Rules for Forward Engineering, 444
 11.4.2.1 Forward Generation of ATs, 444
 11.4.2.2 Forward Generation of RTs, 445
 11.4.2.3 Forward Generation of ETs, 445
 11.4.2.4 Forward Generation of ITs, 445
11.4.3 Rules for Reverse Engineering, 445
11.4.4 Special Considerations, 445
11.5 Summary, 446
11.6 Glossary, 446
References, 449
Exercises, 450

12 Traditional DDBE Architectures
451

12.1 Applying Our Taxonomy to Traditional DDBE Architectures, 452
12.1.1 Classifying the Traditional DDBMS Architecture, 453
 12.1.1.1 The COS-DAD Level, 453
 12.1.1.2 The COS-COO Level, 453
 12.1.1.3 The SAD-VIS Level, 453
 12.1.1.4 The SAD-CON Level, 454
 12.1.1.5 DDBMS Architectural Summary, 454
12.1.2 Classifying the Federated Database Architecture, 454
 12.1.2.1 The COS-DAD Level, 455
 12.1.2.2 The COS-COO Level, 455
 12.1.2.3 The SAD-VIS Level, 455
 12.1.2.4 The SAD-CON Level, 455
 12.1.2.5 Federated Database Architectural Summary, 456
12.1.3 Classifying the Nonfederated Database Architecture, 456
 12.1.3.1 The COS-DAD Level, 456
 12.1.3.2 The COS-COO Level, 456
 12.1.3.3 The SAD-VIS Level, 457
 12.1.3.4 The SAD-CON Level, 457
 12.1.3.5 Nonfederated Database Architectural Summary, 457
12.2 The MDBS Architecture Classifications, 457
12.3 Approaches for Developing A DDBE, 459
 12.3.1 The Top–Down Methodology, 459
 12.3.1.1 Creating the GCS Top–Down, 459
 12.3.1.2 Developing the Software Top–Down, 459
 12.3.2 Bottom–Up Methodology, 459
 12.3.2.1 Creating the GCS Bottom–Up, 460
 12.3.2.2 Developing the Software Bottom–Up, 460
12.4 Deployment of DDBE Software, 461
12.5 Integration Challenges, 463
 12.5.1 Software Integration Issues, 465
 12.5.2 Schema Integration Issues, 466
 12.5.2.1 GCS Maintenance Issues, 466
 12.5.2.2 GCS Creation Issues, 469
12.6 Schema Integration Example, 477
 12.6.1 Translation Step, 478
 12.6.2 Export Schema Generation, 481
 12.6.3 Discovery and Resolution Steps, 481
12.6.4 Restructuring Step, 482
12.7 Example of Existing Commercial DDBEs, 483
 12.7.1 Schema Integration in Commercial Systems, 485
 12.7.2 Software Integration in Existing Products, 486
 12.7.3 Microsoft Access, 487
 12.7.3.1 Differences Between Importing and Linking in Access, 488
 12.7.4 InfoSphere Federation Server, 488
12.8 The Experiment, 489
 12.8.1 The Example Database, 489
 12.8.2 Database Distribution, 489
 12.8.3 The Setup, 490
 12.8.4 Setting Up Data Source Names, 492
 12.8.4.1 Linking Data Sources into Access, 495
 12.8.5 Linking Data Sources into Federation Server, 497
 12.8.5.1 Creating the Nickname for the Excel Spreadsheet on C4, 498
 12.8.5.2 Creating the Nickname for the “Empl_Sal_LE5K” Table, 499
 12.8.5.3 Creating the Nicknames for Emp_Sal_GT5K and Child, 500
 12.8.6 The Experiments, 502
 12.8.7 Querying the Database from Access and Federation Server, 503
 12.8.8 Modifying the Database from Access and Federation Server, 505
12.9 Summary, 509
12.10 Glossary, 509
References, 511
Exercise, 512

13 New DDBE Architectures 513

13.1 Cooperative DBEs, 513
 13.1.1 Subsystems Overview, 515
 13.1.1.1 Client, 517
 13.1.1.2 Distributed Query Service Provider, 517
 13.1.1.3 Data Dictionary Service Provider, 518
 13.1.1.4 Global Interface Schema, 519
 13.1.1.5 Local Deployment Schema, 521
 13.1.1.6 Local Query Service Provider, 522
 13.1.2 Implementation Specifics, 523
 13.1.2.1 DQSP/LQSP Registration and Deregistration, 523
 13.1.2.2 The Client Sends a Query to the DQSP, 523
 13.1.2.3 The DQSP Sends a Query to the DDSP, 524
 13.1.2.4 The DDSP Sends a Fully Qualified Query to the DQSP, 525
13.1.2.5 The Election Process, 526
13.2 Peer-to-Peer DDBEs, 528
 13.2.1 P2P Overview, 528
 13.2.1.1 Client, 529
 13.2.1.2 Global Interface Schema, 529
 13.2.1.3 Local Deployment Schema, 529
 13.2.1.4 Query Service Provider, 529
 13.2.2 Implementation Specifics, 530
13.3 Comparing COOP and P2P, 530
 13.3.1 COOP Versus P2P, 530
 13.3.2 COOP/P2P Versus Traditional DDBEs, 531
 13.3.3 COOP/P2P Versus Other DDBEs, 532
13.4 Summary, 532
13.5 Glossary, 533
References, 534
Exercises, 534

14 DDBE Platform Requirements 535

14.1 DDBE Architectural Vocabulary, 537
 14.1.1 Components and Subsystems, 537
 14.1.2 Service Consumers and Service Providers, 537
 14.1.3 Architectural Visualizations, 538
 14.1.3.1 The Three-Tier Model, 538
 14.1.3.2 Service-Oriented Architecture, 540
 14.1.4 Middleware, 542

14.2 Fundamental Platform Requirements, 544
 14.2.1 Development Requirements, 544
 14.2.1.1 Integration Requirements, 545
 14.2.1.2 Extensibility Requirements (Frameworks), 546
 14.2.1.3 Portability Requirements, 547
 14.2.2 Deployment Requirements, 548
 14.2.2.1 COS Pooling Requirements, 549
 14.2.2.2 COS Versioning Requirements, 549
 14.2.2.3 COS Configuration Requirements, 550
 14.2.2.4 COS Deployment Requirements, 550
 14.2.3 Execution Requirements, 551
 14.2.3.1 Multitasking Requirements, 551
 14.2.3.2 Concurrent Execution Requirements, 553

14.3 Distributed Process Platform Requirements, 555
 14.3.1 Remoteability Requirements, 556
 14.3.1.1 Remote-Code Execution, 557
 14.3.1.2 Remote Messaging, 560
 14.3.2 Directory Service Requirements, 564
 14.3.2.1 Naming Service Requirements, 565
 14.3.2.2 Registration Service Requirements, 565
 14.3.2.3 Lookup Service Requirements, 566

14.4 Distributed Data Platform Requirements, 567
15.2 JMS Provider Implementation Alternatives, 602
 15.2.1 Apache ActiveMQ, 603
 15.2.1.1 Software Installation, 603
 15.2.1.2 Configuration, 603
 15.2.1.3 Startup and Shutdown, 604
 15.2.1.4 Administration Facilities, 604
 15.2.2 OpenJMS, 605
 15.2.2.1 Software Installation, 605
 15.2.2.2 Configuration, 605
 15.2.2.3 Startup and Shutdown, 606
 15.2.2.4 Administration Facilities, 606
15.3 JMS Starter Kit (JMS-SKIT) Framework Overview, 606
 15.3.1 Framework Goals, 607
 15.3.1.1 Message Reliability Goals, 607
 15.3.1.2 Communication Topography Goals, 608
 15.3.1.3 Deployment Topography Goals, 608
 15.3.1.4 Software Complexity Goals, 608
 15.3.2 Framework Package Overview, 609
 15.3.2.1 Framework Interface Package Overview, 609
 15.3.2.2 Framework Implementation Package
 Overview, 612
15.4 Using the JMS-SKIT Framework, 613
 15.4.1 Sample Extension Overview, 613
 15.4.1.1 Sample Extension Architectural Overview, 614
 15.4.1.2 Sample Extension Design Overview, 614
 15.4.1.3 Sample Extension Implementation
 Overview, 615
 15.4.1.4 Sample Extension Deployment Overview, 615
 15.4.2 Creating New Extensions, 615
 15.4.3 Improving the JMS-Based Framework, 616
15.5 Summary, 616
15.6 Glossary, 617
Reference, 619
Exercises, 619

16 The J2EE Platform

16.1 Java 2 Enterprise Edition (J2EE) Overview, 622
 16.1.1 Fundamental J2EE Vocabulary Terms, 622
 16.1.1.1 Java 2 Standard Edition, 623
 16.1.1.2 J2SE Development Kit, 623
 16.1.1.3 Java Runtime Environment, 623
 16.1.1.4 Java 2 Enterprise Edition, 624
 16.1.1.5 J2EE Application Servers, 624
 16.1.1.6 Containers, 624
 16.1.1.7 Java Beans, 624
 16.1.1.8 Enterprise Java Beans, 624
 16.1.1.9 Application Clients, 625
16.1.2 Architectural Overview, 625
16.1.3 Development Overview, 625
16.1.4 Deployment Overview, 626
16.2 J2EE Support for Distributed Process Platform Requirements, 626
 16.2.1 J2EE Remote-Code Execution, 627
 16.2.1.1 Remote Method Invocation, 627
 16.2.1.2 XML Web Services and SOAP, 627
 16.2.1.3 Session Beans, 628
 16.2.2 J2EE Remote Messaging, 629
 16.2.2.1 Message Driven Beans, 629
 16.2.2.2 Java Message Service, 629
 16.2.3 J2EE Directory Services, 630
 16.2.3.1 The Java Naming and Directory Interface Facility, 630
 16.2.3.2 The RMI Registry Facility, 631
 16.2.3.3 The Universal Description, Discovery, and Integration Facility, 631
16.3 J2EE Support for Distributed Data Platform Requirements, 631
 16.3.1 J2EE Security, 632
 16.3.2 Java Database Connectivity, 632
 16.3.3 J2EE Transactions, 633
16.4 J2EE Platform Implementation Alternatives, 633
 16.4.1 JBoss, 634
 16.4.2 Apache Geronimo, 635
 16.4.3 JOnAS, 635
 16.4.4 Other J2EE Platform Implementation Alternatives, 635
16.5 Summary, 636
16.6 Glossary, 637
References, 639
Exercises, 640

17 The J2EE Starter Kit 641
17.1 Java 2 Enterprise Edition Starter Kit (J2EE-SKIT) Overview, 642
 17.1.1 J2EE-SKIT Goals, 642
 17.1.2 J2EE-SKIT Architectural Overview, 643
 17.1.2.1 J2EE-SKIT Subsystem Identification, 644
 17.1.2.2 J2EE-SKIT Subsystem Interaction Overview, 645
 17.1.3 J2EE-SKIT Framework Architectural Overview, 648
 17.1.3.1 The Dbms Subsystem, 648
 17.1.3.2 The Parser Subsystem, 648
 17.1.4 J2EE-SKIT Extension Architectural Overview, 649
 17.1.4.1 The Qualifier Subsystem, 649
 17.1.4.2 The Planner Subsystem, 650
 17.1.4.3 The Dem Subsystem, 650
 17.1.4.4 The Lem Subsystem, 651
17.2 J2EE-SKIT Design Overview, 651
CONTENTS

17.2.1 J2EE-SKIT Framework Design Overview, 651
 17.2.1.1 The Ddbms Subsystem, 652
 17.2.1.2 The Parser Subsystem, 653
17.2.2 J2EE-SKIT Extension Design Overview, 654
 17.2.2.1 The Qualifier Subsystem, 655
 17.2.2.2 The Planner Subsystem, 655
 17.2.2.3 The Dem Subsystem, 655
 17.2.2.4 The Lem Subsystem, 656
17.2.3 Parameter Type Interfaces, 656
 17.2.3.1 ParsedSQL, 657
 17.2.3.2 QualifiedSQL, 657
 17.2.3.3 DET, 657
 17.2.3.4 QueryResultSet, 657
17.2.4 Exception Type Classes, 658
 17.2.4.1 Framework and Extension Exception Base Classes, 658
 17.2.4.2 Subsystem-Specific Exception Base Classes, 659

17.3 Summary, 659
17.4 Glossary, 660
References, 662
Exercises, 662

18 The Microsoft .NET Platform

18.1 Platform Overview, 665
 18.1.1 Fundamental Platform-Specific Vocabulary Terms, 666
 18.1.1.1 Common Language Runtime, 667
 18.1.1.2 Base Class Library, 667
 18.1.1.3 Common Language Specification, 667
 18.1.1.4 Common Type System, 668
 18.1.1.5 Intermediate Language, 669
 18.1.1.6 Managed/Unmanaged Components, 669
 18.1.1.7 Assemblies, 671
 18.1.1.8 Global Assembly Cache, 672
 18.1.1.9 Application Domains, 672
 18.1.2 Architectural Overview, 673
 18.1.3 Development Overview, 674
 18.1.4 Assembly Deployment Overview, 675
 18.1.4.1 Configuration, 676
 18.1.4.2 Assembly Deployment Alternatives, 677
 18.1.4.3 Deploying Shared Assembly, 678
 18.1.4.4 Deploying a Private Assembly, 678
 18.2 Support for Distributed Process Platform Requirements, 679
 18.2.1 Remote-Code Execution Requirements, 680
 18.2.1.1 .NET Remoting, 680
 18.2.2 Remote Messaging Requirements, 681
 18.2.3 Directory Services Requirements, 681