Contents

Introduction ... ix

Chapter 1. Semi-Markov Processes
Migration Credit Risk Models .. 1

1.1. Rating and migration problems 1
 1.1.1. Ratings ... 1
 1.1.2. Migration problem .. 3
 1.1.3. Impact of rating on spreads for zero bonds 5
 1.1.4. Homogeneous Markov chain model 7
 1.1.5. Migration models .. 8

1.2. Homogeneous semi-Markov processes 10
 1.2.1. Basic definitions .. 10
 1.2.2. The Z SMP and the evolution equation system 14
 1.2.3. Special cases of SMP .. 16
 1.2.4. Sojourn times and their distributions 19

1.3. Homogeneous semi-Markov reliability model 21

1.4. Homogeneous semi-Markov migration model 23
 1.4.1. Equivalence with the reliability problem 23
 1.4.2. Transient results .. 24
 1.4.3. Asymptotic results ... 26
 1.4.4. Example .. 28

1.5. Discrete time non-homogeneous case 33
 1.5.1. NHSMPs and evolution equations 33
 1.5.2. The Z NHSMP ... 34
 1.5.3. Sojourn times and their distributions 36
 1.5.4. Non-homogeneous semi-Markov reliability model 37
1.5.5. The non-homogeneous semi-Markov migration model 38
1.5.6. A non-homogeneous example 39

Chapter 2. Recurrence Time HSMP and NHSMP:
Credit Risk Applications 51

2.1. Introduction 51
2.2. Recurrence times 52
2.3. Transition probabilities of homogeneous SMP
and non-homogeneous SMP with recurrence times 53
 2.3.1. Transition probabilities with initial backward 53
 2.3.2. Transition probabilities with initial forward 55
 2.3.3. Transition probabilities with final backward and forward 57
 2.3.4. Transition probabilities with initial and final backward 58
 2.3.5. Transition probabilities with initial and final forward 60
 2.3.6. Transition probabilities with initial and final backward and forward 61
2.4. Reliability indicators of HSMP and NHSMP with
recurrence times 63
 2.4.1. Reliability indicators with initial backward 63
 2.4.2. Reliability indicators with initial forward 66
 2.4.3. Reliability indicators with initial and final backward 70
 2.4.4. Reliability indicators with initial and final backward and forward 73

Chapter 3. Recurrence Time Credit Risk Applications 79

3.1. S&P’s basic rating classes 80
 3.1.1. Homogeneous case 81
 3.1.2. Non-homogeneous case 86
3.2. S&P’s basic rating classes and NR state 90
 3.2.1. Homogeneous case 91
 3.2.2. Non-homogeneous case 106
3.3. S&P’s downward rating classes 120
 3.3.1. An application 122
3.4. S&P’s basic rating classes & NR1 and NR2 states 127
3.5. Cost of capital implications 134

Chapter 4. Mono-Unireducible Markov and
Semi-Markov Processes 137

4.1. Introduction 137
4.2. Graphs and matrices 138
4.3. Single-unireducible non-homogeneous Markov chains 145
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Single-unireducible semi-Markov chains</td>
<td>152</td>
</tr>
<tr>
<td>4.5</td>
<td>Mono-unireducible non-homogeneous backward semi-Markov chains</td>
<td>158</td>
</tr>
<tr>
<td>4.6</td>
<td>Real data credit risk application</td>
<td>160</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>5.2</td>
<td>The reward introduction</td>
<td>166</td>
</tr>
<tr>
<td>5.3</td>
<td>The DTNHSMRWP spread rating model</td>
<td>168</td>
</tr>
<tr>
<td>5.4</td>
<td>The algorithm description</td>
<td>170</td>
</tr>
<tr>
<td>5.5</td>
<td>A numerical example</td>
<td>173</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Data</td>
<td>173</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Results</td>
<td>176</td>
</tr>
<tr>
<td>6.1</td>
<td>The price and the value of the swap: the fixed recovery rate case</td>
<td>184</td>
</tr>
<tr>
<td>6.2</td>
<td>The price and the value of the swap: the random recovery rate case</td>
<td>188</td>
</tr>
<tr>
<td>6.3</td>
<td>The determination of the n-period random recovery rate</td>
<td>196</td>
</tr>
<tr>
<td>6.4</td>
<td>A numerical example</td>
<td>198</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>206</td>
</tr>
<tr>
<td>7.2</td>
<td>Multivariate semi-Markov chains</td>
<td>208</td>
</tr>
<tr>
<td>7.3</td>
<td>The two-component reliability model</td>
<td>220</td>
</tr>
<tr>
<td>7.4</td>
<td>Counterparty credit risk in a CDS contract</td>
<td>224</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Pricing a risky CDS and CVA evaluation</td>
<td>227</td>
</tr>
<tr>
<td>7.5</td>
<td>A numerical example</td>
<td>230</td>
</tr>
<tr>
<td>7.6</td>
<td>Bivariate semi-Markov reward chains</td>
<td>233</td>
</tr>
<tr>
<td>7.7</td>
<td>The estimation methodology</td>
<td>247</td>
</tr>
<tr>
<td>7.8</td>
<td>Credit spreads evaluation</td>
<td>249</td>
</tr>
<tr>
<td>7.9</td>
<td>Numerical experience</td>
<td>259</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>267</td>
</tr>
<tr>
<td>8.2</td>
<td>Monte Carlo semi-Markov credit risk model</td>
<td>267</td>
</tr>
</tbody>
</table>
8.2.1. The homogeneous MCSM evolution with D as absorbing state ... 269
8.3. Results of the MCSMP credit model in a homogeneous environment 273

Bibliography ... 279

Index ... 297