Index

A
AC circuit concepts, 36–39
 AC network with voltage and current perfectly in phase, 38
 interconnected AC power system, 37–38
 path of voltage, 36
AC network investment, 337–338
AEMO. See Australian Energy Market Operator
AER. See Australian Energy Regulator
Allocative efficiency, 4, 5, 304, 305
Aluminium smelters, 6, 53, 76, 77, 302
Apparent power, 40
Arcing, in a high-voltage switchyard, 55
Australia’s NEM. See Australian National Electricity Market
Australian energy market, 81
Australian Energy Market Operator, 85
 constraint library, maintained by, 86
Australian Energy Regulator, 86
Australian National Electricity Market, 84, 85, 90, 128, 174, 232, 247, 319, 359
Australian Productivity Commission (2002), 281

B
Batteries, 48
Benefit function, 105–106
Bidding, 82
 competitive, 121–123
 disorderly, 87, 359
 distorted, 87
 of generators, control, 332
Biomass, 46
Black box, 318
Buyer-side investment, 193–195

C
Capacitance, 42
Capacitors, 39, 41–43, 42, 57, 63
Capacity markets, 10, 84, 89, 205, 207
Capacity payments, 203–204
 capacity markets, 205
 reserve requirements, 204–205
Capacity-based tariffs, 389, 390
Combined-cycle gas turbine, 47
Competition, 24, 58, 77, 78, 119, 136, 298, 332
Competitive bidding, achieving optimal dispatch through, 121–123
Competitive fringe structure, 24
Competitive markets, 5, 10
 achieving optimal short-run outcomes using, 14
 autonomous market process, 15–16
 short-run welfare maximum, 14–15
Conductors, 33, 35, 43, 54, 56, 62, 69
 power losses, 35
Congestion assets, 349
Congestion rents, 163
Connection assets, 87, 348–351
Constrained optimisation, 5–6, 10. See also
 Constraint(s)
 first order condition, 6, 10, 14
 Karush–Kuhn–Tucker conditions, 6
 lagrange multipliers, 6, 10, 14
Constrained-on/constrained-off payments
 market participants, 365
 with, 364–366
 without, 357–364
Constraint(s)
affecting optimal dispatch, 106
constraint equations, 6
and set of feasible injections, 147–151
implications of ignoring network constraints
when handling contingencies, 233–238
intertemporal, 215, 216
network constraints, 139–152
on rate of production, 15
optimal dispatch with network
constraints, 153–155
physical network constraints, 17, 83, 155, 211,
215, 233
properties of nodal prices, with binding
constraint, 162
ramp rate constraints, 110–113, 116, 214, 215,
218, 222, 224, 226, 228, 229, 318
smart markets and generic constraints (See
Smart markets)
supply–demand balance constraint, 16, 17, 20,
241
Constraint-marginal-value–duration curve, 344
Consumers’ surplus, 6, 9
Consumption
assets, 4, 181, 301, 304, 359, 386, 393
constraints, 19
decisions, 136, 365
devices, 51
electricity (See Electricity consumption)
of reactive power, 42
optimal rate, 8
price, 368, 370
resources, 136, 153
tariff, 384
Contingency, 211–212
credible, 212
efficient handling, 212–213
implications of ignoring network
constraints, 233–235
effect of additional constraints on, 236–237
feasible set of injections with a frequency-
based IDIDM, 235–238
three-node network, 235
optimal dispatch ignoring, 220
services, 232
Cooling systems, 36
Cost
fixed, 49, 73, 87, 94, 188, 202, 204, 300
functions, 11, 13, 18, 94, 96, 102, 181, 249,
252, 342
marginal, 11, 21, 29, 95–97, 99, 101
curve, of typical generator, 95
of generation, 93–96
opportunity, 95, 108, 109, 111
startup, 75, 94, 97, 113, 114, 115, 121, 127,
128
and unit-commitment decision, 113–115
variable, 94
Cournot game, 323, 330
Cournot oligopoly model, 322
Critical-peak pricing, 389
Customers behaviour, 6
Customers benefit, 348

D
Day-ahead vs. real-time markets, 126–127
improving quality of short-term price
forecasts, 127–129
reducing exercise of market power, 129
DC circuit concepts, 33–34
DC interconnectors
efficient operation, 171–173
entrepreneurial DC network operation, 173
DC load flow model, 144–145
DC transmission lines, 55
Decentralisation, 33, 119
decentralised generation investment
decisions, 199–201
in theory, 374–377
of dispatch task, 374–377
Decisions
decentralised generation investment, 199–201
efficient, regarding investment in new assets, 5
electricity consumers, 20
longer-run by producers/consumers, 20
investment in productive capacity, 20–22
short-run, of customer, 7
unit commitment decision, 113–115
Demand, 6
and consumers’ surplus, 6–7
based tariffs, 389
curve (See Demand curve)
short-run decision of customer, 7
value/utility function, 7
Demand curve, 7, 13
apparent, 131
downward sloping, 28, 102, 269, 380
for a price-taking customer, 7–10
inelastic, 131
inverse, 8, 9
node, 157
residual, 23, 24, 26, 286, 287, 288, 293, 295, 299, 312, 329, 334
true, 121, 122
vertically upwards, 194, 195
Discount, 168, 188, 217, 218, 297, 391, 392
affect sharing of risks between, 392
rate, 225
Dispatch interval, 86, 114, 231, 232, 238, 239, 241
Dispatch task
decentralisation of, 374–377
hierarchy of, 374, 375
optimal, 377
Distribution networks, 57, 74, 87, 88, 371, 372, 385
assets, 57
distortion in pricing, 371
efficient pricing of, 371–373
Smart Grid, 373
tariffs, 377
Dominant firm, 22, 24–26, 28, 304, 322. See also Organisations
Dynamic and transient, stability limits, 60, 63
Dynamic efficiency, 4, 5, 304
E
Economic efficiency, 4, 5
short-term, improvements, 25
Economic objectives, 3–5
Economic welfare, 3
Electric power industry, 66
service provided by, 68
Electric power system, elements of, 44–45
Electrical energy, 35, 45, 51, 94
produced using different approaches, 48
Electricity consumers, 20, 32, 44, 52, 66–70, 102, 132, 218, 265, 282, 283, 298, 369, 385
Electricity consumption, 65–66, 68, 104, 123, 206, 218
flexibility, 65
profile of consumption, 65
wholesale market
conditions, responsiveness to, 66
degree of integration with, 66
Electricity distribution tariffs, in over-incentive, 385
Electricity generation, 45–48
transforming other forms of energy into, 45–46
Electricity generators
characteristics, 48–51
affecting generation operation/investment decisions, 50–51
controllability, 48
environmental impacts, 50
fixed cost, 49
forecastability, 50
limits on energy, produced in a period of time, 49
limits on rate of change of output/production, 49
relationship to related services, 50
reversibility, 50
variable cost of production, 49
nonconvexities, 96
variable cost, 96
Electricity industry
approaches to reform of, 68
integrated industry, 80
retail competition, 79, 80
single buyer approach, 79, 80
wholesale competition, 79, 80
challenges, 68
range of controllable production and consumption devices, 67
tasks performed in, 73
long-term tasks, 75–76
risk-management tasks, 75
short-term tasks, 73–75
Electricity markets, 5
reducing susceptibility to market power, 295
reform, Pros and Cons, 88
Electricity producers vs. consumers, 66–68
Electricity transmission
and distribution networks, 52–59
assets, 57
diversification of risks, 52
economies of scale, 52
location of fuel sources, 52
single wire earth return (SWER), 57
competition/regulation, 58–59
networks, 53–56
assets, 57
in the Broken Hill region, 56
Electrochemistry, 45
Electromagnetic induction, 45, 46, 48
Energy, 34–35
Energy balance, 59
equation, 312
in subnetwork, 376
requirement, 60
Energy-limited generators, 95, 108
Energy-limited resources, efficient dispatch of, 108–110
Energy-only market, 201
‘missing money’ problem, 202–203 and the investment boom–bust cycle, 203 episodes of high prices as, 201–202
Expenditure, 11, 12, 28, 94, 182
generator incurring, 94, 182 incurred by the firm, 12

F
FCAS. See Frequency control ancillary services
Feed-in-tariff, 378
Financial transmission right, 270–273
Fixed cost, 49, 188, 190, 192, 199, 300, 343, 381, 387
Flat time-averaged price
price-duration curve, 382
Forward markets, 245
Fossil fuel generators, 46
conventional, 47
Four-node network, optimal dispatch in, 161–162
Frequency control ancillary services, 232
Frequency control services, 212, 232
contingency services, 232
regulation service, 232
Frequency-based balancing services, 238
allocating costs, 240–241
procurement, 239–240
volume required, 238–239
Frequency-based dispatch of balancing services, 232–233
contingency services, 232
regulation service, 232
Frequency-based intradispatch interval dispatch mechanism, 233
disadvantages, 233
FTR. See Financial transmission right
Fuel cells, 46, 52, 66, 75
Full-scale market modelling techniques, 318
Future price forecasting, and intertemporal optimisation, 108

G
Gas turbines, 46
Generators, 44. See also various generators
buyer-owned generators and stand-alone generators (See Symmetry)
capacity, 96
characteristics of electricity generators, 48
embedded, demand curve and marginal cost curve for, 380
energy-limited generators, 95, 108
entitlement, 365
exercise market power, practice/theory, 284, 289
by a portfolio of generators, 313–314
economic and physical withholding, 289–291
in a meshed network, 311–312
price-volume trade-off, 284–286
pricing up and the marginal generator, 291–292
profit-maximising choice of rate of production for, 286–287
profit-maximising offer curve, 287–289
feasible combinations of energy and raise service, 239–240
hedge contract to eliminate profit risk for, 252
hedging cost-shifting risks, 254–256
incentive to exercise market power, 292–295
incentive to locate in locations, 366
least cost dispatch for (See Optimal dispatch)
low-cost, 364
marginal cost curve, 13, 95, 100, 121–122, 253, 289, 319, 333, 380
market power by portfolio, 313–314
perfect hedge for with an upward-sloping marginal cost curve, 253
physical maximum rate of production, 239
profit maximisation problem, 227
profit-maximising rate, 315
simple stylised representation, 96
socially efficient incentive to expand its capability, 229
Geothermal energy sources, 52
Gigawatt-hours (GWh), 35
Government-owned network utilities, 348
Governments, 89
integrated monopoly firm is owned by, 77
owned enterprises
commercial incentives and operating practices, 78
owned vertically integrated electricity supply, 78
ownership in electricity industry, 77
public utility regulation, 82
Greenhouse gases, 50, 68
Hedging
by customers, 256
 customer with a constant utility function, 257–258
 hedging utility-shifting risks, 258–259
fixed-volume FTRs a useful instrument, 273
impact of hedge position of a generator, 295–298
interlocational, and transmission investment, 273–276
intertemporal
 and generation investment, 263–264
 role of merchandising surplus, 267
perfect hedge construction, 249–250
design, 250–251
 hedging by a generator with no cost uncertainty, 252–254
 hedging cost-shifting risks, 254–256
 perfect cost-shifting hedge, 251
 specific cases, 252
High-voltage capacitor banks, 41
High-voltage DC links
 advantages, 56
 bipolar links, 56
 disadvantage, 56
 monopolar links, 56
Hirschmann-Herfindahl Index (HHI), 322
capacity-constrained, 324
HVDC link. See High-voltage DC links
Hydro generators, 48, 49, 52, 93, 108
Hydroelectric generation, 46
Hypothetical network configuration
 modelling of connections, 375
I
IDIDM. See Intradispatch interval dispatch mechanism
Impedance, 42, 43, 63, 65, 139, 146, 152
Incentive, 19
 commercial, 78
 constraints on, 129
dead spiral, 385–386
 illustration of, 386–388
distort, 83, 205
 for efficiency, 119
 for investment
 in controllable embedded generation, 380–388
<table>
<thead>
<tr>
<th>Investment, 349, 350, 363</th>
<th>consequences of exercise of, 301</th>
</tr>
</thead>
<tbody>
<tr>
<td>cycles, 89</td>
<td>longer-run efficiency impacts, 302</td>
</tr>
<tr>
<td>in electricity generating resources, 80</td>
<td>short-run efficiency impacts, 301–302</td>
</tr>
<tr>
<td>in presence of network constraints, 193</td>
<td>worked example, 302–304</td>
</tr>
<tr>
<td>in production resources, 75</td>
<td>definition, 281–282, 318</td>
</tr>
<tr>
<td>in remote location, 348, 349</td>
<td>demand and supply, 308, 317</td>
</tr>
<tr>
<td>in small-scale local generation, 394</td>
<td>examination of past market outcomes, 318–322</td>
</tr>
<tr>
<td>in two-node network, 344–348</td>
<td>generators, by portfolio, 313–314</td>
</tr>
<tr>
<td>optimal, 195, 207</td>
<td>Hirschmann-Herfindahl Index (HHI), 322–324</td>
</tr>
<tr>
<td>productive capacity, 20–22</td>
<td>importing and exporting regions in radial</td>
</tr>
<tr>
<td>radial network, 342–343</td>
<td>network, 309</td>
</tr>
<tr>
<td>substantial, in rooftop solar PV, 384</td>
<td>in electricity markets, 282–283</td>
</tr>
<tr>
<td>substantial, in wind generation, 87</td>
<td>loads, 298–300</td>
</tr>
<tr>
<td>Investment principles, review of, 381</td>
<td>market-share-based</td>
</tr>
<tr>
<td></td>
<td>indicators, 323</td>
</tr>
<tr>
<td>K</td>
<td>measures, 322–324</td>
</tr>
<tr>
<td>Karush–Kuhn–Tucker conditions, 6, 15–17, 21, 98–100, 109, 111, 182, 184, 187, 195, 225, 228, 334, 338, 343</td>
<td>meshed network, by single generator, 311–312</td>
</tr>
<tr>
<td>Kilowatt-hours (kWh), 34</td>
<td>modelling of, 330–332</td>
</tr>
<tr>
<td>Kinetic energy, 45, 46, 48, 63, 64, 69</td>
<td>linearisation, 332</td>
</tr>
<tr>
<td>Kirchhoff, Gustav Robert, 34</td>
<td>practice, 331–332</td>
</tr>
<tr>
<td>Kirchhoff’s law, 34</td>
<td>peak vs. off-peak, 293–294</td>
</tr>
<tr>
<td>KKT conditions. See Karush-Kuhn-Tucker conditions</td>
<td>policies to reduce, 332–333</td>
</tr>
<tr>
<td>L</td>
<td>portfolio of generating assets, 314</td>
</tr>
<tr>
<td>Legitimate goal, for economic policymakers, 4</td>
<td>possessing vs. exercise, 282</td>
</tr>
<tr>
<td>Lerner index, 25, 321, 323, 326</td>
<td>price–cost margin studies, 321–322</td>
</tr>
<tr>
<td>Liberalised market-based electricity industry. See Australian National Electricity Market</td>
<td>quantity-withdrawal approach, 320</td>
</tr>
<tr>
<td>Load pocket, 88, 283, 309, 315, 323, 332</td>
<td>quantity-withdrawal studies, 319–321</td>
</tr>
<tr>
<td>Load–duration curve, 133–135, 346</td>
<td>radial network, by single generator, 307–311</td>
</tr>
<tr>
<td>in optimal-network-planning, 346</td>
<td>simple indicators of, 322</td>
</tr>
<tr>
<td>Locational marginal prices. See Nodal prices</td>
<td>elasticity measurement of residual</td>
</tr>
<tr>
<td>Losses</td>
<td>demand, 328–329</td>
</tr>
<tr>
<td>and optimal dispatch, 168</td>
<td>PSI/RSI, 324–328</td>
</tr>
<tr>
<td>and settlement residues and merchandising surplus, 167–168</td>
<td>stimulate generation investment, 300–301</td>
</tr>
<tr>
<td>network (See Network, losses)</td>
<td>transmission constraints, 311</td>
</tr>
<tr>
<td>M</td>
<td>transmission rights, effect of, 314–315</td>
</tr>
<tr>
<td>Marginal cost, 11, 95, 97, 345</td>
<td>vertical integration, 299–300</td>
</tr>
<tr>
<td>Marginal cost curve, 12, 13, 24, 95, 99, 100, 121, 122, 201, 265, 287, 296, 319, 333, 359, 380</td>
<td>Market price, 8, 9, 16, 18, 21, 22, 123, 126, 195, 206, 230, 281, 290, 294, 299, 305, 311, 325, 333</td>
</tr>
<tr>
<td>Market mechanisms, 78, 119, 123</td>
<td>Market-orientated electric power system, 81</td>
</tr>
<tr>
<td>Market power, 88, 281</td>
<td>forward market trader role, 82</td>
</tr>
<tr>
<td>ad hoc assumptions, 318</td>
<td>liberalised, 82</td>
</tr>
<tr>
<td>approaches to assessing, 317–318</td>
<td>market operator role, 81–82</td>
</tr>
<tr>
<td></td>
<td>monopoly regulator role, 82</td>
</tr>
<tr>
<td></td>
<td>retailer role, 82</td>
</tr>
<tr>
<td>Market-orientated reforms of the late twentieth century, 77–79</td>
<td>Market-share-based measures, 322</td>
</tr>
<tr>
<td></td>
<td>Megawatt-hours (MWh), 35</td>
</tr>
</tbody>
</table>
Merchandising surplus, 163, 167, 361
 in a three-node network, 165–166
 in facilitating interlocational hedging, 267–268
 packaging, 269
Merchant transmission links, 59
Meshed network, 139, 140, 152, 156
 market power by single generator, 311–312
 optimal pre- and postcontingency dispatch, 223
 three-node, optimal dispatch in, 159–161
Mispercicing, 357–359, 365, 369, 370
Monopoly, 22–24
 and price regulation, 25–26, 78
 integrated monopoly provider, 73, 77
 monopoly rents, 305
 natural, 58
 service, 25
Must-run-generation, 326, 327

N
Narrow bands, 60
Nash equilibrium, 330, 331
National Electricity Market (NEM), 359
 assessment of, 87
 improving geographic differentiation of prices, 87
Net injections, 141–143, 377
Net metering, 377, 379
Network investment, 348–349
 efficient, 337–338
 financial implications of, 338–341
 network expansion, benefit of, 341
 two-node graphical representation, 339–341
 generation, coordination of, 348–350
 proactive, 349
 reactive, 349
Network services
 declining demand for, 390–393
 distribution networks
 distribution pricing, 373
 efficient pricing of, 371–373
 Smart Grid, 373
 increasing returns to scale, 390–393
Networks
 AC network, 36, 38, 39, 56, 139, 172, 178, 337
 actual, configuration
 modelling of connections, 375
 augmentation
 economic welfare benefit, 341
 two-node network, welfare implications of, 340
 capacity
 CMV–duration curve, 345
 determination of optimal level, 345
 expected prices, evolution of, 344
 configurations, 337, 338
 electricity, 69
 hub-and-spoke network, 139
 investment (See Network investment)
 loop flow, 139
 losses, 166–168
 meshed networks, 140
 network incidence matrix, 141, 144
 no network case, 341
 optimal dispatch, 153–155
 achieving optimal dispatch using a smart market, 155
 radial networks, 139, 140, 146, 152, 355, 356, 363
 distribution factors for, 146–147
 services (See Network services)
 transmission network, 53, 54, 86, 87, 140, 142, 350, 371, 374
Nodal prices, 155, 157, 172, 268, 349, 358, 362, 366, 374, 382, 384, 385, 394
 computation, 374, 394
 generators/regional pricing for consumers, 367–369
 side deals and net metering, 367–369
 independent, 163
 local generation investment, 383, 385
 production-weighted, 369
 properties, with a single binding constraint, 162
 relationship between link capacity and, 158
 signals, 349, 355
 quality of, 349
 smaller customers, 388
 weighted-average, 384
Nonconvexities, 96, 97
 cost of dispatch in presence of, 107
 in production, minimum operating levels, 106–107
 minimum load levels/startup costs, complicating task, 116
Nuclear energy, 46, 48
Nuclear power generators, 46
Off-peak times, 372
Ohm’s law, 35, 63
ON AC circuits, 42–43
Oligopoly, 26, 29, 293
Cournot, 27, 322, 323, 326
economic models, 26
repeated games, 27–28
horizontal integration, 28
Nash equilibrium, 27–28
tacit collusion, 28
Operating power system ex ante, 218–219
Optimal dispatch. See also Optimal dispatch, in very short run
four-node network, 161–162
least cost dispatch for generators with constant variable cost, 99–102
cost function for simple three-generator case, 102
industry supply curve, 100
KKT conditions, 99
merit order, 100
system marginal cost, 100–101
of generation and load assets, 102–104
optimal least cost dispatch of generation resources, 98–99
KKT conditions, 98
system marginal cost, 98
total cost of optimal dispatch, 99
radial networks, 156–157
smart market, 155
three-node meshed network, 159–161
two-node network, 157–158
with inelastic demand, 97–98
example, 101–102
Optimal dispatch, in very short run, 216–218
examples, 219–221
ignoring network constraints, 221–222
initial state, transient states and final states, illustration, 216
intertemporal problem, 217
present value of surplus in steady-state, 217
preventive actions, 218
reduce cost of corrective actions, 220
using a competitive market, 223–224
dispatch through prices, 227–228
examples, 224–226
investment incentives, 228–229
with network constraints, 222–223
Optimal generation investment problem, 181–183
Optimal level of generation capacity, with downward sloping demand, 183–185
case of inelastic demand, 185–186
Optimal link capacity
determination of, 347
expected price at each node, 347
Optimal mix of generation capacity, with downward sloping demand, 186–189
with inelastic demand, 189–191
Optimal network switching, 173–174
entrepreneurial network switching, 176–177
network switching and network contingencies, 174
worked example, 174–176
Optimal operation, of power system, 216
Organisations, 3. See also Electricity industry and economic objectives, 3
high-powered incentives for efficiency, 77
market-orientated reforms, 77
Over-the-counter trade, 246

Payments
with constrained-on/constrained-off, 364–366
without constrained-on/constrained-off, 357–364
Penalty, 125, 358, 391, 392
Phase-angle regulator (PAR), 63
Piezoelectric effect, 46
Physical limits/constraints, on electric power system, 59–60
dynamic and transient stability limits, 63–65
increasing thermal limits on a transmission line, 62–63
short-term versus steady-state thermal limit, 61–62
static versus dynamic thermal limits, 61
thermal limits, 60–61
voltage stability limits, 63
Pivotal supplier indicator, 322, 326
transmission-constrained, 327
Policymakers, 318
Positive theories, 3
Postcontingency optimal dispatch adjustment, 213
Power, 34, 39
Power factor, 41, 42, 57, 142, 144
Power flows, 141–143
Power purchase agreements (PPAs), 77
Index

Power systems generators, 51
Power transfer distribution factors, matrix of, 145–146
 converting between reference nodes, 146
Preventive and corrective actions, 213–215
Price caps, 203, 295
Price controls, and rationing, 129–130
 inadequate metering, 131
 involuntary load shedding, 131–133
Price-duration curve, 133–135
 derivation, 135
Price-taker, 8, 10, 12
Price-taking customer, 8
Price-cost margin studies, 321
Price–volume trade-off, 380
Proactive network investment, 349
Producers’ surplus, 10–11
Production assets, 4
Productive capacity, 11, 20, 29, 255, 283
 investment in, 20–22
Productive efficiency, 4, 5, 120, 136, 301, 305
Profit(s), 7, 12, 17, 23, 27, 30, 96, 121, 227, 229, 285, 302, 305, 339. See also Hedging
 DC-link entrepreneur, 173
generation investment depends on, 200
generator and overall efficiency of resource use, 128
 hedged profit of generator, 295
 impact of time-averaging of prices, 206
 incentive to increase the ramp-rate capability, 229
 maximising decisions, 227
 maximising price-taking firm, 12
 maximising rate of production, 286, 380
 profit-maximising offer curve, 287–289
Prosumers, 67
PTDFs. See Power transfer distribution factors

R
Radial networks, 139, 140, 342
 distribution factors for, 146–147
 efficient investment in, 342–343
 market power by single generator, 307–311
 optimal dispatch in, 156–157
Ramp-rate constraints, efficient dispatch in, 110–113
Reactance, 43, 139, 144
Reactive network investment, 349
Reactive power, 39–40
 control of, 41–42
 mathematics of, 40–41
Real power, 40
Real, reactive and apparent power, relationship, 41
Rebidding., 128
Reconductoring, 62
Regional pricing
 balance sheet of system operator, 361–363
 for consumers, and merchandising surplus, 361, 362, 368
 grouping nodes, illustration of, 356
 impact on inter-regional settlement residues, 362
 in simple network, 360
 long-run effects on investment, 363–364
 mismatch between pricing and dispatch, 358
 network investment, 348–349
 decisions, 364
 nodal pricing for generators, 355
 side deals/net metering, 367–369
 overview of, 355–357
 payments to market participants, 362
 short-run effects in simple network, 360–361
 with constrained-on/constrained-off payments, 364–366
 without constrained-on/constrained-off payments, 357–364
Renewable generators, 49
Reserve margins, 203
Residual demand analysis, 328, 329, 330
Residual demand curve, 25, 292, 308
 hedge position, 292
 importance, 292
 network congestion, 292, 295
 price caps, 295
 shape, 293
 slope, 292, 295
Residual supply index, 322, 326
Resistance, 43
Retail tariff structures, 377–380, 388–390
 and death spiral, 385–386
 illustration of, 386–388
 critical-peak pricing, 389
 demand/capacity-based tariffs, 389–390
 time-of-use tariffs, 389
S
Satisfactory operating state, 215, 235
Scheduled generators, 85, 86, 128
Screening curve analysis, 191–192
generation investment
 in presence of network constraints, 193
using screening curves
 to assess impact of increased renewable penetration, 192–193
Secure operating state, 215
Semischeduled, 85
Settlement residues, 163–165, 167
Shared network, 348
Short-run marginal cost (SRMC) curve, 284, 319
Single wire earth return, 56, 57
Single-priced region, 368
Smart Grid, 45, 58, 67, 80, 373
Smart market(s), 17, 120
 achieving optimal dispatch using, 155
 and generic constraints, 17–18
 Nash equilibrium, 120
 process, 18–20
 system operator/market operator, 120
 to support optimal dispatch, 120
Smoothing, elasticity measurement, 329
Solar cells, 48, 69
Solar photovoltaic generation, 48
Solar PV generation, 48, 378, 384, 385
Solar thermal generation, 46
Static electricity, 46
Static VAR compensators, 42, 55, 56
Superconductors, 35
Supply, 10, 74, 78, 83, 84, 107, 110, 120, 123, 126, 131, 157, 162, 219, 238, 250, 291
 and producers’ surplus, 10–14
 inelastic, 305
 pivotal supplier indicator, 322, 324
 residual supply index, 322, 324
 supply–demand balance, 333
 constraint, 16
 in wholesale market, 49
Supply curve, 12, 104, 121, 122, 130, 135, 157, 158, 291, 294, 303
 for a competitive firm, 13
 for a price-taking firm facing a simple price, 11–14
Supply–demand scarcity, 322
SWER. See Single wire earth return
Switching customer, 392
Sydney Futures Exchange, 87
Symmetry
 buyer-owned generators, and stand-alone generators, 104–105
 in treatment of generation and load, 104
total surplus maximisation
 and generation cost minimisation, 105
Synchronous condensers, 55

T
Telemetry, 55
Terawatt-hours (TWh), 35
Thermal generators, 48, 49, 50, 93, 94, 112
Thermal limits, 36, 40, 60
 increasing on a transmission line, 62
 increasing ground clearance, 62
 increasing line voltage, 62
 increasing number of circuits, 62
 reconductoring, 62
 short-term vs. steady-state, 61–62
 static vs. dynamic, 61
Thermoelectric effect, 46
Three-node meshed network, 145, 149, 150
 optimal dispatch in, 159–161
Three-phase power, 43–44
Time-averaging of network charges
 and generation investment, 206–207
 impact of time-averaging of prices
 on generation investment incentives, 206
Time-of-use (TOU) tariffs, 389
Time-varying demand, 133–135
Total cost
 convex in total load, 99
 generating electricity, 114, 303, 346, 392
 of optimal dispatch, 102
 of production, 13, 14, 24
Trader role, 259–261
 risks facing individual traders, 261–262
Transformers, 36–37, 53, 55, 62
Transmission networks, 44, 53, 55, 57, 59, 69, 81, 85, 145, 233, 394
Transmission towers, dimensions, 54
Transmission-constrained PSI (TCPSI), 327
Two-node network
 efficient investment in, 344–348
 optimal dispatch in, 157–158
 price determination without binding network constraints, 157
 welfare implications of a network augmentation
 in, 340
 with a constrained link, 158

U
Unconstrained network case, 341
 financial indicators, 341
Index

V
Value/utility function, 7, 9, 13
Variable costs, 11, 96, 97, 108, 183–196, 204, 206–207, 225, 227, 228, 252, 253, 255, 261, 301, 302, 310, 343, 381, 384, 387, 394
 constant, least cost dispatch for generators with, 99–101
 of production, 49
Volt–Amperes-Reactive (VAR), 40
Voltage stability limits, 60, 63, 143

W
Watt-hours, 34
Watts, 34
Welfare-maximising price-taking consumer, 19
Wholesale electricity markets, 20, 67, 245
 integrate small-scale generation and load resources into, 84
 liberalised, 82–85, 87
 aspects, differ in, 83–84
 vs. other market design factors, 84
 price signals, 81
 single buyer model, 79
Wholesale market design
 variation in, 123–124
 compulsory gross pool/net pool, 124–125
 single price/pay-as-bid, 125–126
wholesale market price, 282
 HVDC link, 282
Wind generators, 85

Z
Zonal pricing, 355, 357