Contents

Preface xv
Nomenclature xvii

PART I INTRODUCTION TO ECONOMIC CONCEPTS 1

1 Introduction to Micro-economics 3
1.1 Economic Objectives 3
1.2 Introduction to Constrained Optimisation 5
1.3 Demand and Consumers’ Surplus 6
 1.3.1 The Short-Run Decision of the Customer 7
 1.3.2 The Value or Utility Function 7
 1.3.3 The Demand Curve for a Price-Taking Customer Facing a Simple Price 7
1.4 Supply and Producers’ Surplus 10
 1.4.1 The Cost Function 11
 1.4.2 The Supply Curve for a Price-Taking Firm Facing a Simple Price 11
1.5 Achieving Optimal Short-Run Outcomes Using Competitive Markets 14
 1.5.1 The Short-Run Welfare Maximum 14
 1.5.2 An Autonomous Market Process 15
1.6 Smart Markets 17
 1.6.1 Smart Markets and Generic Constraints 17
 1.6.2 A Smart Market Process 18
1.7 Longer-Run Decisions by Producers and Consumers 20
 1.7.1 Investment in Productive Capacity 20
1.8 Monopoly 22
 1.8.1 The Dominant Firm – Competitive Fringe Structure 24
 1.8.2 Monopoly and Price Regulation 25
1.9 Oligopoly 26
 1.9.1 Cournot Oligopoly 27
 1.9.2 Repeated Games 27
1.10 Summary 28
PART II INTRODUCTION TO ELECTRICITY NETWORKS AND ELECTRICITY MARKETS

2 Introduction to Electric Power Systems 33
 2.1 DC Circuit Concepts 33
 2.1.1 Energy, Watts and Power 34
 2.1.2 Losses 35
 2.2 AC Circuit Concepts 36
 2.3 Reactive Power 38
 2.3.1 Mathematics of Reactive Power 40
 2.3.2 Control of Reactive Power 42
 2.3.3 Ohm's Law on AC Circuits 43
 2.3.4 Three-Phase Power 44
 2.4 The Elements of an Electric Power System 45
 2.5 Electricity Generation 46
 2.5.1 The Key Characteristics of Electricity Generators 49
 2.6 Electricity Transmission and Distribution Networks 52
 2.6.1 Transmission Networks 54
 2.6.2 Distribution Networks 57
 2.6.3 Competition and Regulation 59
 2.7 Physical Limits on Networks 60
 2.7.1 Thermal Limits 61
 2.7.2 Voltage Stability Limits 64
 2.7.3 Dynamic and Transient Stability Limits 64
 2.8 Electricity Consumption 66
 2.9 Does it Make Sense to Distinguish Electricity Producers and Consumers? 67
 2.9.1 The Service Provided by the Electric Power Industry 69
 2.10 Summary 70
 Questions 71
 Further Reading 72

3 Electricity Industry Market Structure and Competition 73
 3.1 Tasks Performed in an Efficient Electricity Industry 73
 3.1.1 Short-Term Tasks 73
 3.1.2 Risk-Management Tasks 75
 3.1.3 Long-Term Tasks 75
 3.2 Electricity Industry Reforms 76
 3.2.1 Market-Orientated Reforms of the Late Twentieth Century 77
 3.3 Approaches to Reform of the Electricity Industry 79
 3.4 Other Key Roles in a Market-Orientated Electric Power System 81
 3.5 An Overview of Liberalised Electricity Markets 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>An Overview of the Australian National Electricity Market</td>
<td>85</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Assessment of the NEM</td>
<td>87</td>
</tr>
<tr>
<td>3.7</td>
<td>The Pros and Cons of Electricity Market Reform</td>
<td>88</td>
</tr>
<tr>
<td>3.8</td>
<td>Summary</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>90</td>
</tr>
<tr>
<td>PART III</td>
<td>OPTIMAL DISPATCH: THE EFFICIENT USE</td>
<td>OF GENERATION, CONSUMPTION AND</td>
</tr>
<tr>
<td>4</td>
<td>Efficient Short-Term Operation of an Electricity Industry</td>
<td>93</td>
</tr>
<tr>
<td>4.1</td>
<td>The Cost of Generation</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Simple Stylised Representation of a Generator</td>
<td>96</td>
</tr>
<tr>
<td>4.3</td>
<td>Optimal Dispatch of Generation with Inelastic Demand</td>
<td>97</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Optimal Least Cost Dispatch of Generation Resources</td>
<td>98</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Least Cost Dispatch for Generators with Constant Variable Cost</td>
<td>99</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Example</td>
<td>101</td>
</tr>
<tr>
<td>4.4</td>
<td>Optimal Dispatch of Both Generation and Load Assets</td>
<td>102</td>
</tr>
<tr>
<td>4.5</td>
<td>Symmetry in the Treatment of Generation and Load</td>
<td>104</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Symmetry Between Buyer-Owned Generators and Stand-Alone Generators</td>
<td>104</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Symmetry Between Total Surplus Maximisation and Generation Cost Minimisation</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>The Benefit Function</td>
<td>105</td>
</tr>
<tr>
<td>4.7</td>
<td>Nonconvexities in Production: Minimum Operating Levels</td>
<td>106</td>
</tr>
<tr>
<td>4.8</td>
<td>Efficient Dispatch of Energy-Limited Resources</td>
<td>108</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Example</td>
<td>109</td>
</tr>
<tr>
<td>4.9</td>
<td>Efficient Dispatch in the Presence of Ramp-Rate Constraints</td>
<td>110</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Example</td>
<td>111</td>
</tr>
<tr>
<td>4.10</td>
<td>Startup Costs and the Unit-Commitment Decision</td>
<td>113</td>
</tr>
<tr>
<td>4.11</td>
<td>Summary</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>117</td>
</tr>
<tr>
<td>5</td>
<td>Achieving Efficient Use of Generation and Load Resources using</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>a Market Mechanism in an Industry with no Network Constraints</td>
<td>119</td>
</tr>
<tr>
<td>5.1</td>
<td>Decentralisation, Competition and Market Mechanisms</td>
<td>121</td>
</tr>
<tr>
<td>5.2</td>
<td>Achieving Optimal Dispatch Through Competitive Bidding</td>
<td>121</td>
</tr>
<tr>
<td>5.3</td>
<td>Variation in Wholesale Market Design</td>
<td>123</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Compulsory Gross Pool or Net Pool?</td>
<td>124</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Single Price or Pay-as-Bid?</td>
<td>125</td>
</tr>
<tr>
<td>5.4</td>
<td>Day-Ahead Versus Real-Time Markets</td>
<td>126</td>
</tr>
</tbody>
</table>
5.4.1 Improving the Quality of Short-Term Price Forecasts 127
5.4.2 Reducing the Exercise of Market Power 129
5.5 Price Controls and Rationing 129
5.5.1 Inadequate Metering and Involuntary Load Shedding 131
5.6 Time-Varying Demand, the Load-Duration Curve and the Price-Duration Curve 133
5.7 Summary 135
Questions 137
Further Reading 137

6 Representing Network Constraints 139
6.1 Representing Networks Mathematically 139
6.2 Net Injections, Power Flows and the DC Load Flow Model 141
6.2.1 The DC Load Flow Model 144
6.3 The Matrix of Power Transfer Distribution Factors 145
6.3.1 Converting between Reference Nodes 146
6.4 Distribution Factors for Radial Networks 146
6.5 Constraint Equations and the Set of Feasible Injections 147
6.6 Summary 151
Questions 152

7 Efficient Dispatch of Generation and Consumption Resources in the Presence of Network Congestion 153
7.1 Optimal Dispatch with Network Constraints 153
7.1.1 Achieving Optimal Dispatch Using a Smart Market 155
7.2 Optimal Dispatch in a Radial Network 156
7.3 Optimal Dispatch in a Two-Node Network 157
7.4 Optimal Dispatch in a Three-Node Meshed Network 159
7.5 Optimal Dispatch in a Four-Node Network 161
7.6 Properties of Nodal Prices with a Single Binding Constraint 162
7.7 How Many Independent Nodal Prices Exist? 163
7.8 The Merchandising Surplus, Settlement Residues and the Congestion Rents 163
7.8.1 Merchandising Surplus and Congestion Rents 163
7.8.2 Settlement Residues 164
7.8.3 Merchandising Surplus in a Three-Node Network 165
7.9 Network Losses 166
7.9.1 Losses, Settlement Residues and Merchandising Surplus 167
7.9.2 Losses and Optimal Dispatch 168
7.10 Summary 169
Questions 170
Further Reading 170

8 Efficient Network Operation 171
8.1 Efficient Operation of DC Interconnectors 171
8.1.1 Entrepreneurial DC Network Operation 173
8.2 Optimal Network Switching 173
 8.2.1 Network Switching and Network Contingencies 174
 8.2.2 A Worked Example 174
 8.2.3 Entrepreneurial Network Switching? 176
8.3 Summary 177
Questions 178
Further Reading 178

PART IV EFFICIENT INVESTMENT IN GENERATION AND CONSUMPTION ASSETS 179

9 Efficient Investment in Generation and Consumption Assets 181
 9.1 The Optimal Generation Investment Problem 181
 9.2 The Optimal Level of Generation Capacity with Downward Sloping Demand 183
 9.2.1 The Case of Inelastic Demand 185
 9.3 The Optimal Mix of Generation Capacity with Downward Sloping Demand 186
 9.4 The Optimal Mix of Generation with Inelastic Demand 189
 9.5 Screening Curve Analysis 191
 9.5.1 Using Screening Curves to Assess the Impact of Increased Renewable Penetration 192
 9.5.2 Generation Investment in the Presence of Network Constraints 193
 9.6 Buyer-Side Investment 193
 9.7 Summary 195
Questions 196
Further Reading 197

10 Market-Based Investment in Electricity Generation 199
 10.1 Decentralised Generation Investment Decisions 199
 10.2 Can We Trust Competitive Markets to Deliver an Efficient Level of Investment in Generation? 201
 10.2.1 Episodes of High Prices as an Essential Part of an Energy-Only Market 201
 10.2.2 The ‘Missing Money’ Problem 202
 10.2.3 Energy-Only Markets and the Investment Boom–Bust Cycle 203
 10.3 Price Caps, Reserve Margins and Capacity Payments 203
 10.3.1 Reserve Requirements 204
 10.3.2 Capacity Markets 205
 10.4 Time-Averaging of Network Charges and Generation Investment 206
 10.5 Summary 207
Questions 207

PART V HANDLING CONTINGENCIES: EFFICIENT DISPATCH IN THE VERY SHORT RUN 209
11 Efficient Operation of the Power System in the Very Short-Run

11.1 Introduction to Contingencies

11.2 Efficient Handling of Contingencies

11.3 Preventive and Corrective Actions

11.4 Satisfactory and Secure Operating States

11.5 Optimal Dispatch in the Very Short Run

11.6 Operating the Power System Ex Ante as though Certain Contingencies have Already Happened

11.7 Examples of Optimal Short-Run Dispatch

11.7.1 A Second Example, Ignoring Network Constraints

11.7.2 A Further Example with Network Constraints

11.8 Optimal Short-Run Dispatch Using a Competitive Market

11.8.1 A Simple Example

11.8.2 Optimal Short-Run Dispatch through Prices

11.8.3 Investment Incentives

11.9 Summary

Questions

Further Reading

12 Frequency-Based Dispatch of Balancing Services

12.1 The Intradispatch Interval Dispatch Mechanism

12.2 Frequency-Based Dispatch of Balancing Services

12.3 Implications of Ignoring Network Constraints when Handling Contingencies

12.3.1 The Feasible Set of Injections with a Frequency-Based IDIDM

12.4 Procurement of Frequency-Based Balancing Services

12.4.1 The Volume of Frequency Control Balancing Services Required

12.4.2 Procurement of Balancing Services

12.4.3 Allocating the Costs of Balancing Services

12.5 Summary

Questions

Further Reading

PART VI MANAGING RISK

13 Managing Intertemporal Price Risks

13.1 Introduction to Forward Markets and Standard Hedge Contracts

13.1.1 Instruments for Managing Risk: Swaps, Caps, Collars and Floors

13.1.2 Swaps

13.1.3 Caps

13.1.4 Floors

13.1.5 Collars (and Related Instruments)

13.2 The Construction of a Perfect Hedge: The Theory

13.2.1 The Design of a Perfect Hedge
13.3 The Construction of a Perfect Hedge: Specific Cases 252
 13.3.1 Hedging by a Generator with no Cost Uncertainty 252
 13.3.2 Hedging Cost-Shifting Risks 254
13.4 Hedging by Customers 256
 13.4.1 Hedging by a Customer with a Constant Utility Function 257
 13.4.2 Hedging Utility-Shifting Risks 258
13.5 The Role of the Trader 259
 13.5.1 Risks Facing Individual Traders 261
13.6 Intertemporal Hedging and Generation Investment 263
13.7 Summary 264
Questions 265

14 Managing Interlocational Price Risk 267
14.1 The Role of the Merchandising Surplus in Facilitating
 Intertemporal Hedging 267
 14.1.1 Packaging the Merchandising Surplus in a Way that
 Facilitates Hedging 269
14.2 Interlocational Transmission Rights: CapFTRs 269
14.3 Interlocational Transmission Rights: Fixed-Volume FTRs 271
 14.3.1 Revenue Adequacy 271
 14.3.2 Are Fixed-Volume FTRs a Useful Hedging Instrument? 273
14.4 Intertemporal Hedging and Transmission Investment 273
 14.4.1 Infinitesimal Investment in Network Capacity 274
 14.4.2 Lumpy Investment in Network Capacity 274
14.5 Summary 276
Questions 277
Further Reading 277

PART VII MARKET POWER 279

15 Market Power in Electricity Markets 281
15.1 An Introduction to Market Power in Electricity Markets 281
 15.1.1 Definition of Market Power 281
 15.1.2 Market Power in Electricity Markets 282
15.2 How Do Generators Exercise Market Power? Theory 284
 15.2.1 The Price–Volume Trade-Off 284
 15.2.2 The Profit-Maximising Choice of Rate of Production for a
 Generator with Market Power 286
 15.2.3 The Profit-Maximising Offer Curve 287
15.3 How do Generators Exercise Market Power? Practice 289
 15.3.1 Economic and Physical Withholding 289
 15.3.2 Pricing Up and the Marginal Generator 291
15.4 The Incentive to Exercise Market Power: The Importance of the Residual
 Demand Curve 292
 15.4.1 The Shape of the Residual Demand Curve 293
15.4.2 The Importance of Peak Versus Off-Peak for the Exercise of Market Power 293
15.4.3 Other Influences on the Shape of the Residual Demand Curve 295

15.5 The Incentive to Exercise Market Power: The Impact of the Hedge Position of a Generator 295
15.5.1 Short-Term Versus Long-Term Hedge Products and the Exercise of Market Power 297
15.5.2 Hedge Contracts and Market Power 297

15.6 The Exercise of Market Power by Loads and Vertical Integration 298
15.6.1 Vertical Integration 299

15.7 Is the Exercise of Market Power Necessary to Stimulate Generation Investment? 300
15.8 The Consequences of the Exercise of Market Power 301
15.8.1 Short-Run Efficiency Impacts of Market Power 301
15.8.2 Longer-Run Efficiency Impacts of Market Power 302
15.8.3 A Worked Example 302

15.9 Summary 304
Questions 306
Further Reading 306

16 Market Power and Network Congestion 307
16.1 The Exercise of Market Power by a Single Generator in a Radial Network 307
16.1.1 The Exercise of Market Power by a Single Generator in a Radial Network: The Theory 308
16.2 The Exercise of Market Power by a Single Generator in a Meshed Network 311
16.3 The Exercise of Market Power by a Portfolio of Generators 313
16.4 The Effect of Transmission Rights on Market Power 314
16.5 Summary 315
Questions 315
Further Reading 315

17 Detecting, Modelling and Mitigating Market Power 317
17.1 Approaches to Assessing Market Power 317
17.2 Detecting the Exercise of Market Power Through the Examination of Market Outcomes in the Past 318
17.2.1 Quantity-Withdrawal Studies 319
17.2.2 Price-Cost Margin Studies 321
17.3 Simple Indicators of Market Power 322
17.3.1 Market-Share-Based Measures and the HHI 322
17.3.2 The PSI and RSI Indicators 324
17.3.3 Variants of the PSI and RSI Indicators 326
17.3.4 Measuring the Elasticity of Residual Demand 328
17.4 Modelling of Market Power 330
17.4.1 Modelling of Market Power in Practice 331
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3</td>
<td>Retail Tariff Structures and the Incentive to Misrepresent Local Production and Consumption</td>
<td>377</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Incentives for Net Metering and the Effective Price</td>
<td>378</td>
</tr>
<tr>
<td>20.4</td>
<td>Incentives for Investment in Controllable Embedded Generation</td>
<td>380</td>
</tr>
<tr>
<td>20.4.1</td>
<td>Incentives for Investment in Intermittent Solar PV Embedded Generation</td>
<td>384</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Retail Tariff Structures and the Death Spiral</td>
<td>385</td>
</tr>
<tr>
<td>20.4.3</td>
<td>An Illustration of the Death Spiral</td>
<td>386</td>
</tr>
<tr>
<td>20.5</td>
<td>Retail Tariff Structures</td>
<td>388</td>
</tr>
<tr>
<td>20.5.1</td>
<td>Retail Tariff Debates</td>
<td>389</td>
</tr>
<tr>
<td>20.6</td>
<td>Declining Demand for Network Services and Increasing Returns to Scale</td>
<td>390</td>
</tr>
<tr>
<td>20.7</td>
<td>Summary</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Questions</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>399</td>
</tr>
</tbody>
</table>