Contents

List of Contributors xi
Acknowledgements xiii
Introduction xv

PART I THE SMOKING EPIDEMIC 1

1 Generalised Compartmental Modelling of Health Epidemics 3
 1.1 Introduction 3
 1.2 Basic compartmental model of smoking dynamics 5
 1.3 Properties of the basic model 8
 1.3.1 Steady-state solutions 8
 1.3.2 Steady-state stability 9
 1.4 Generalised model inclusive of multiple peer recruitment 10
 1.4.1 Smoking-free equilibrium in the generalised model 12
 1.4.2 New smoking-present equilibria in the generalised model 13
 1.5 Bistability and ‘tipping points’ in the generalised model 15
 1.5.1 Steady-state variation with ϵ 15
 1.5.2 ‘Tipping points’ and hysteresis 17
 1.6 Summary and conclusions 18
Acknowledgements 19
References 19

2 Stochastic Modelling for Compartmental Systems Applied to Social Problems 21
 2.1 Introduction 21
 2.2 Global sensitivity analysis of deterministic models 23
 2.3 Sensitivity analysis of the generalised smoking model
 with peer influence 24
 2.4 Adding randomness to a deterministic model 26
 2.5 Sensitivity analysis of the stochastic analogue 28
 2.6 Conclusion 30
Acknowledgements 31
References 31
3 Women and Smoking in the North East of England
3.1 Introduction 33
3.2 Background 33
3.3 Interrogating the figures 35
3.4 Materialist and cultural or behavioural explanations 39
3.5 The tobacco industry and the creation of social values 41
3.6 Local voices 43
3.7 Conclusions 44
Acknowledgements 45
References 45

PART II MATHEMATICAL MODELLING IN HEALTHCARE 49

4 Cardiac Surgery Performance Monitoring 51
4.1 Introduction 52
4.1.1 Why do we monitor cardiac surgery providers? 53
4.1.2 Professional framework for monitoring 53
4.1.3 Objectives 54
4.2 Statistical framework for monitoring 55
4.2.1 Data collection 55
4.2.2 Data extraction and cleaning 55
4.2.3 Missing data and imputation 56
4.2.4 Risk adjustment 56
4.2.5 Risk-adjustment methodology 57
4.2.6 The status quo 58
4.2.7 Measuring divergence 58
4.3 A non-stationary process 61
4.3.1 Calibration drift 62
4.3.2 Discrimination 63
4.3.3 A changing population 64
4.3.4 A closer inspection of calibration 68
4.4 Dynamic modelling approaches 68
4.4.1 Model approaches 68
4.4.2 Comparison of model approaches 72
4.5 Case example 74
4.6 Discussion 75
4.7 Conclusion 77
Acknowledgements 78
References 78

5 Heart Online Uncertainty and Stability Estimation 82
5.1 Introduction 83
5.2 Monitoring live complex systems 83
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 The Bayes linear approach</td>
<td>85</td>
</tr>
<tr>
<td>5.4 The Fantasia and Sudden Cardiac Death databases</td>
<td>86</td>
</tr>
<tr>
<td>5.5 Exploring ECG datasets</td>
<td>87</td>
</tr>
<tr>
<td>5.6 Assessing discrepancy</td>
<td>91</td>
</tr>
<tr>
<td>5.7 Final remarks and conclusion</td>
<td>93</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>93</td>
</tr>
<tr>
<td>References</td>
<td>94</td>
</tr>
<tr>
<td>6 Stents, Blood Flow and Pregnancy</td>
<td>95</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>96</td>
</tr>
<tr>
<td>6.2 Drug-eluting stents</td>
<td>97</td>
</tr>
<tr>
<td>6.2.1 Mathematical model</td>
<td>97</td>
</tr>
<tr>
<td>6.2.2 Modelling drug release</td>
<td>99</td>
</tr>
<tr>
<td>6.2.3 Modelling the coupled problem</td>
<td>99</td>
</tr>
<tr>
<td>6.2.4 Solving the model equations</td>
<td>100</td>
</tr>
<tr>
<td>6.2.5 Remarks on modelling drug release</td>
<td>100</td>
</tr>
<tr>
<td>6.3 Modelling blood flow</td>
<td>101</td>
</tr>
<tr>
<td>6.3.1 Mathematical model of blood flow</td>
<td>101</td>
</tr>
<tr>
<td>6.3.2 Application to blood flow in a dog’s femoral artery</td>
<td>103</td>
</tr>
<tr>
<td>6.4 Modelling a capillary-fill medical diagnostic tool</td>
<td>103</td>
</tr>
<tr>
<td>6.4.1 Basic equations</td>
<td>105</td>
</tr>
<tr>
<td>6.4.2 Recharacterisation of the model</td>
<td>109</td>
</tr>
<tr>
<td>6.4.3 Comments</td>
<td>110</td>
</tr>
<tr>
<td>6.5 Summary and closing remarks</td>
<td>110</td>
</tr>
<tr>
<td>References</td>
<td>111</td>
</tr>
<tr>
<td>PART III TIPPING POINTS IN SOCIAL DYNAMICS</td>
<td>113</td>
</tr>
<tr>
<td>7 From Five Key Questions to a System Sociology Theory</td>
<td>115</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>116</td>
</tr>
<tr>
<td>7.2 Complexity features</td>
<td>117</td>
</tr>
<tr>
<td>7.3 Mathematical tools</td>
<td>119</td>
</tr>
<tr>
<td>7.4 Black Swans from the interplay of different dynamics</td>
<td>122</td>
</tr>
<tr>
<td>7.4.1 Nature of the interactions</td>
<td>123</td>
</tr>
<tr>
<td>7.4.2 Generator of a BS</td>
<td>124</td>
</tr>
<tr>
<td>7.4.3 Domino effect</td>
<td>125</td>
</tr>
<tr>
<td>7.5 Validation of models</td>
<td>125</td>
</tr>
<tr>
<td>7.6 Conclusions: towards a mathematical theory of social systems</td>
<td>126</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>127</td>
</tr>
<tr>
<td>References</td>
<td>127</td>
</tr>
<tr>
<td>*8 Complexity in Spatial Dynamics: The Emergence of Homogeneity/Heterogeneity in Culture in Cities</td>
<td>130</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>131</td>
</tr>
</tbody>
</table>
CONTENTS

8.2 Modelling approach 132
8.3 Description of the model 134
8.4 Sensitivity analysis and results 138
8.5 Discussion and conclusions 141
Acknowledgements 143
References 143

9 Cultural Evolution, Gene–Culture Coevolution, and Human Health 146
9.1 Introduction 147
9.2 Cultural evolution 149
 9.2.1 Self-medication treatment efficacy 150
9.3 Epidemiological modelling of cultural change 153
 9.3.1 Drinking behaviour 154
9.4 Gene–culture coevolution 157
 9.4.1 Lactase persistence and dairying 160
9.5 Conclusion 163
References 164

10 Conformity Bias and Catastrophic Social Change 168
10.1 Introduction 168
10.2 Three-population compartmental model 171
10.3 Basic system excluding conformity bias 173
10.4 Including conformity bias 174
10.5 Comparative statics 176
10.6 Summary 178
10.7 Conclusions 179
Acknowledgements 180
Appendix 10.A: Stability in the conformity bias model 180
References 181

PART IV THE RESILIENCE OF TIPPING POINTS 183

11 Psychological Perspectives on Risk and Resilience 185
11.1 Introduction 185
11.2 Forensic psychological risk assessments in prisons 186
11.3 Suicide in prisons 187
11.4 Biases in human decision making – forensic psychologists making risky decisions 189
11.5 The Port of London Authority 192
11.6 Final thoughts and reflections 194
Acknowledgements 194
References 194
12 Tipping Points and Uncertainty in Health and Healthcare Systems 196
12.1 Introduction: ‘tipping points’ as ‘critical events’ in health systems 197
12.2 Prediction, prevention and preparedness strategies for risk resilience in complex systems 198
12.3 No such thing as a ‘never event’? 200
12.4 Local versus large-scale responses to risk 202
12.5 Conclusions: the ongoing agenda for research on tipping points in complex systems 204
Endnotes and acknowledgements 205
References 205

Index 209