PART I DIGITAL DESIGN AND POWER MANAGEMENT

1 DESIGN IN THE ENERGY–DELAY SPACE 3
 Massimo Alioto, Elio Consoli, and Gaetano Palumbo
 1.1 Introduction 3
 1.2 Energy and Delay Modeling 4
 1.3 Energy–Delay Space Analysis and Hardware-Intensity 14
 1.4 Energy-Efficient Design of Digital Circuits 20
 1.5 Design of Energy-Efficient Pipelined Systems 29
 1.6 Conclusion 36
 References 37

2 SUBTHRESHOLD SOURCE-COUPLED LOGIC 41
 Armin Tajalli and Yusuf Leblebici
 2.1 Introduction 41
 2.2 Ultralow Power CMOS Logic: Design and Tradeoffs 43
 2.3 Subthreshold Source-Coupled Logic 47
 2.4 Power-Frequency Scaling 51
 2.5 Conclusions 53
 References 55

3 ULTRALOW-VOLTAGE DESIGN OF NANOMETER CMOS CIRCUITS
 FOR SMART ENERGY-AUTONOMOUS SYSTEMS 57
 David Bol
 3.1 Introduction 57
 3.2 Impact of Technology Scaling on Subthreshold MOSFET
 Characteristics 61
 3.3 Scaling Trend of the Minimum-Energy Point 63
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Practical Energy of Nanometer ULV Circuits under Robustness and</td>
<td>69</td>
</tr>
<tr>
<td>Timing Constraints</td>
<td></td>
</tr>
<tr>
<td>3.5 Technology/Circuit Methodology and Roadmap for ULV Design</td>
<td>75</td>
</tr>
<tr>
<td>in the Nanometer Era</td>
<td></td>
</tr>
<tr>
<td>3.6 Conclusion</td>
<td>78</td>
</tr>
<tr>
<td>References</td>
<td>79</td>
</tr>
<tr>
<td>4 IMPAIRMENT-AWARE ANALOG CIRCUIT DESIGN BY RECONFIGURING FEEDBACK</td>
<td>85</td>
</tr>
<tr>
<td>SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Ping-Ying Wang</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>86</td>
</tr>
<tr>
<td>4.2 Theorem of Impairment-Aware Analog Design in Feedback Systems</td>
<td>86</td>
</tr>
<tr>
<td>4.3 Practical Implementations</td>
<td>89</td>
</tr>
<tr>
<td>4.4 Measured Results</td>
<td>96</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>99</td>
</tr>
<tr>
<td>References</td>
<td>100</td>
</tr>
<tr>
<td>5 ROM-BASED LOGIC DESIGN: A LOW-POWER DESIGN PERSPECTIVE</td>
<td>103</td>
</tr>
<tr>
<td>Bipul C. Paul</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>103</td>
</tr>
<tr>
<td>5.2 RBL Design</td>
<td>105</td>
</tr>
<tr>
<td>5.3 RBL Adder</td>
<td>108</td>
</tr>
<tr>
<td>5.4 RBL Multiplier</td>
<td>111</td>
</tr>
<tr>
<td>5.5 Conclusions</td>
<td>116</td>
</tr>
<tr>
<td>References</td>
<td>117</td>
</tr>
<tr>
<td>6 POWER MANAGEMENT: ENABLING TECHNOLOGY</td>
<td>119</td>
</tr>
<tr>
<td>Lou Hutter and Felicia James</td>
<td></td>
</tr>
<tr>
<td>6.1 Macroeconomic Drivers for Power Technologies</td>
<td>119</td>
</tr>
<tr>
<td>6.2 Market Trends</td>
<td>122</td>
</tr>
<tr>
<td>6.3 Application Examples</td>
<td>123</td>
</tr>
<tr>
<td>6.4 Technology Implications and Trends</td>
<td>124</td>
</tr>
<tr>
<td>6.5 Current Technologies and Capabilities</td>
<td>130</td>
</tr>
<tr>
<td>6.6 Specific Application Example</td>
<td>140</td>
</tr>
<tr>
<td>6.7 Emerging Technologies</td>
<td>142</td>
</tr>
<tr>
<td>6.8 Conclusion</td>
<td>143</td>
</tr>
<tr>
<td>References</td>
<td>143</td>
</tr>
</tbody>
</table>
7 ULTRALOW POWER MANAGEMENT CIRCUIT FOR OPTIMAL ENERGY HARVESTING IN WIRELESS BODY AREA NETWORK 147
Yen Kheng Tan, Yuanjin Zheng, and Huey Chian Foong

7.1 Introduction 147
7.2 Wireless Body Area Network 148
7.3 Optimal Energy Harvesting System 159
7.4 Ultralow Power Management Integrated Circuit for Solar Energy Harvesting System 163
7.5 Conclusions 171
References 171

PART II ANALOG AND RF DESIGN

8 ANALOG CIRCUIT DESIGN FOR SOI 177
Andrew Marshall

8.1 SOI Devices 177
8.2 Partially Depleted SOI 178
8.3 FDSOI and FnFET 181
8.4 Device Considerations (FDSOI AND PDSOI) 181
8.5 Analog Circuit Building Blocks 184
8.6 Operational Amplifiers 189
8.7 Operational Transconductance Amplifier 193
8.8 Radio Frequency Low-Noise Amplifier 197
8.9 Mixers and Analog Multipliers 197
8.10 Analog to Digital and Digital to Analog Converters 201
8.11 Summary 204
References 204

9 FREQUENCY GENERATION AND CONTROL WITH SELF-REFERENCED CMOS OSCILLATORS 207
Michael S. McCorquodale, Nathaniel Gaskin, and Vidyabhusan Gupta

9.1 Introduction 207
9.2 Self-Referenced CMOS Oscillators 211
9.3 Packaging 225
9.4 Conclusion 234
References 235
10 SYNTHESIS OF STATIC AND DYNAMIC TRANSLINEAR CIRCUITS 239
Bradley A. Minch

10.1 Translinear Circuits: What Is In a Name? 239
10.2 The Scope of Translinear Circuits 242
10.3 Static and Dynamic Translinear Circuit Synthesis 242
10.4 Static Translinear Circuit Synthesis Examples 250
10.5 Dynamic Translinear Circuit Synthesis Examples 260
References 272

11 MICROWATT POWER CMOS ANALOG CIRCUIT DESIGNS: ULTRALOW POWER LSIs FOR POWER-AWARE APPLICATIONS 277
Ken Ueno and Tetsuya Hirose

11.1 Introduction 277
11.2 Subthreshold Characteristics in a MOSFET 279
11.3 Low-Power Voltage Reference Circuits 284
11.4 Low-Power Current Reference Circuits 293
11.5 Example of Power-Aware LSI Applications: CMOS Smart Sensor for Monitoring the Quality of Perishables 299
11.6 Conclusion and Discussion 308
References 310

12 HIGH-SPEED CURRENT-MODE DATA DRIVERS FOR AMOLED DISPLAYS 313
Yong-Joon Jeon and Gyu-Hyeong Cho

12.1 Introduction 313
12.2 Current-Mode Drivers in Representation of the Second-Generation Current Conveyor 316
12.3 Improved Transient Current Feed-Forward Output Buffer 317
12.4 Push-Pull Transient Current Feedforward Output Buffer 324
12.5 Conclusion 332
References 333

13 RF TRANSCEIVERS FOR WIRELESS APPLICATIONS 335
Alireza Zolfaghari, Hooman Darabi, and Henrik Jensen

13.1 Transmitter Architectures 335
13.2 Cartesian Transmitters 336
13.3 Constant-Envelope Transmitters Using Phase Modulated Loops 339
13.4 Polar Transmitters 340
13.5 Case Studies 346
References 350

PART III DEVICE LAYOUT AND RELIABILITY

14 TECHNOLOGY-AWARE COMMUNICATION ARCHITECTURE DESIGN FOR PARALLEL HARDWARE PLATFORMS 355
Davide Bertozzi, Alessandro Strano, Daniele Ludovici, and Francisco Gilabert

14.1 Introduction 355
14.2 NoC Building Blocks: The Switch 358
14.3 NoC Connectivity Pattern 362
14.4 NoCs and the GALS Paradigm 372
14.5 Putting Everything Together: Technology-Aware Network Connectivity 385
14.6 Looking Forward: Mesochronous Synchronization 389
14.7 Conclusions 390
References 390

15 DESIGN AND OPTIMIZATION OF INTEGRATED TRANSMISSION LINES ON SCALED CMOS TECHNOLOGIES 393
Federico Vecchi, Matteo Repossi, Wissam Eyssa, Paolo Arcioni, and Francesco Svelto

15.1 Introduction 393
15.2 Coplanar Waveguides 394
15.3 Shielded Transmission Lines 397
15.4 Accurate and Fast Analysis of Periodic Lines 402
15.5 Design and Experimental Results 406
15.6 Conclusions 411
References 413

16 ON-CHIP SURFING INTERCONNECT 415
Suwen Yang and Mark Greenstreet

16.1 Introduction 415
16.2 Surfing 417
16.3 Surfing DLLs 419
16.4 Pipelined Clock Forwarding 423
16.5 Source Synchronous Surfing 427
16.6 Surfing Handshakes 431
16.7 Summary 435
References 436

17 ON-CHIP SPIRAL INDUCTORS WITH INTEGRATED MAGNETIC MATERIALS 439
Wei Xu, Saurabh Sinha, Hao Wu, Tawab Dastagir, Yu Cao, and Hongbin Yu
17.1 Introduction 439
17.2 Previous Work 441
17.3 Magnetic Materials 443
17.4 Simulation Study 447
17.5 Device Fabrication 451
17.6 Measurement Results 453
17.7 Potential Applications of On-Chip Spiral Inductors with Magnetic Materials 455
17.8 Conclusion 458
References 458

18 RELIABILITY OF NANOELECTRONIC VLSI 463
Milos Stanisavljevic, Alexandre Schmid, and Yusuf Leblebici
18.1 Introduction 463
18.2 Increased Defect Density and Reliability 464
18.3 Reliability Evaluation 466
18.4 Historically Important CAD Tools 467
18.5 Recent Progress 469
18.6 Monte Carlo Reliability Evaluation Tool 473
18.7 Fault-Tolerant Computing 476
18.8 Conclusions 476
References 477

19 TEMPERATURE MONITORING ISSUES IN NANOMETER CMOS INTEGRATED CIRCUITS 483
Pablo Ituero and Marisa López-Vallejo
19.1 Introduction 483
PART IV CIRCUIT TESTING

20 LOW-POWER TESTING FOR LOW-POWER LSI CIRCUITS 511
 Xiaoqing Wen and Yervant Zorian

 20.1 Introduction 511
 20.2 Test Power Problem in Logic LSI Testing 513
 20.3 Basic Strategies to Test Power Reduction 515
 20.4 Shift Power Reduction 517
 20.5 Capture Power Reduction 519
 20.6 Toward Next-Generation Low-Power Testing Solutions 522
 20.7 Summary 525

References 526

21 CHECKERS FOR ONLINE SELF-TESTING OF ANALOG CIRCUITS 529
 Haralampos-G. Stratigopoulos and Yiorgos Makris

 21.1 Introduction 529
 21.2 Time-Invariant Linear Circuits 531
 21.3 Fully Differential Circuits 542
 21.4 Conclusions 553

References 553

22 DESIGN AND TEST OF ROBUST CMOS RF AND MM-WAVE RADIOS 557
 Sleiman Bou-Sleiman and Mohammed Ismail

 22.1 Introduction 557
 22.2 Why Robust RF and mm-Wave ICs? 558
 22.3 Design Methodology for First-Time-Right Radio SoCs 564