Contents

List of Figures xi
List of Tables xix
List of Contributors xxiii
Preface xxv

PART ONE  BASICS, ENABLING TECHNOLOGIES AND ECONOMICS

1  Introduction 3
   1.1  Introduction 3
   1.2  History 6
   1.3  Wireless Communications in a HAP Environment 10
      1.3.1  Comparison of HAPs Capabilities when Compared with Terrestrial and Satellite Systems 10
      1.3.2  Regulatory Environment and Restrictions 13
   1.4  Candidate Standards for Provision of Services and Applications from HAPs 18
      1.4.1  Mobile Cellular Standards 19
      1.4.2  IEEE 802 Wireless Standards 20
      1.4.3  Multipoint Distribution Services for Multimedia Applications – MMDS and LMDS 24
      1.4.4  DVB Standards 25
   1.5  Overview of Past and Present HAP Related Projects, Trials and Development Plans 26
      1.5.1  StratXX AG – X-Station 27
      1.5.2  ERS srl 28
2 Aeronautics and Energetics

2.1 Operating Environment and Related Challenges

2.1.1 The Layers of the Atmosphere

2.2 Types of Airborne Vehicles Used for HAPs

2.2.1 Aerostatic Aerial Platforms

2.2.2 Aerodynamic Aerial Platforms

2.3 Power Subsystem Alternatives

2.3.1 Conventional Energy Sources for HAPs

2.3.2 Renewable Energy Sources for HAPs

2.3.3 Remotely Beamed Energy for HAPs

2.4 Flight/Altitude Control

2.4.1 HAP Station Keeping

2.4.2 HAP Mobility Models

2.5 Typical Characteristics of HAP Aircraft and Airships

References

3 Operating Scenarios and Reference Architectures

3.1 Operating Scenarios

3.1.1 HAPs User Scenarios

3.1.2 HAPs Network Scenarios

References
3.2 Antenna Requirements and Related Challenges 80
  3.2.1 Introduction 80
  3.2.2 Types of Antennas for the Delivery of Broadband Services in the mm-Wave Bands 81
  3.2.3 Antenna Model Example 84
3.3 System and Network Architecture of HAP-Based Communication Systems 87
  3.3.1 Overview 87
  3.3.2 HAP Architectures 92
  3.3.3 Broadband Communications Links 96
References 113

4 Applications and Business Modelling 115
  4.1 Introduction 115
  4.2 Applications and Services 116
    4.2.1 Short Term 120
    4.2.2 Medium Term 120
    4.2.3 Long Term 121
  4.3 Business Model Introduction 122
    4.3.1 Operating Scenario 122
    4.3.2 Business Model Assumption 125
  4.4 Service Provider Centric Models 127
    4.4.1 Bandwidth Utilisation and Contention Ratio 127
    4.4.2 WLAN to Trains 128
    4.4.3 Backhaul for Terrestrial Base Stations/Access Points 131
    4.4.4 Broadband Internet 135
    4.4.5 Broadcast/Multicast 138
    4.4.6 Event Servicing and Disaster Relief 141
    4.4.7 Third Generation (3G) Mobile Telephone 148
  4.5 HAP Operator Centric Model 152
    4.5.1 Financial Model Assumptions 153
    4.5.2 Unmanned Solar Powered Airship 154
    4.5.3 Fuel Powered Manned Plane 156
    4.5.4 Fuel Powered Unmanned Plane 159
    4.5.5 Solar Powered Unmanned Plane 162
  4.6 Risk Assessment 164
    4.6.1 Technology Assessment 164
    4.6.2 Market Assessment 167
References 168
8 Advanced Communication Techniques as Enablers for HAP-Based Communication Systems 239
8.1 Modern Wireless System Design Concepts 239
  8.1.1 Smart Antennas 240
  8.1.2 Cognitive Radio and Dynamic Spectrum Management 241
  8.1.3 Cross-Layer Design and Optimisation 242
8.2 Diversity Techniques 244
  8.2.1 Diversity Techniques in Broadband HAP Communications 248
8.3 MIMO Systems 251
  8.3.1 Spatial Multiplexing 252
  8.3.2 Space–Time Coding 254
  8.3.3 MIMO Systems in HAP Broadband Communications 258
8.4 Adaptive Coding and Modulation Schemes 261
  8.4.1 ACM in HAP Broadband Communications 264
8.5 Advanced Radio Resource Management Techniques 271
  8.5.1 Introduction 271
  8.5.2 Scenario 272
  8.5.3 Channel Assignment Strategy 272
  8.5.4 Performance 274
  8.5.5 No Connection Drop Algorithm 275
  8.5.6 No Connection Drop Algorithm with No Downlink Threshold Detection 279
  8.5.7 No Threshold Detection 280
  8.5.8 Discussion 281
References 283

PART THREE MULTIPLE HIGH ALTITUDE PLATFORMS

9 Multiple HAP Networks 289
9.1 Why Multiple HAP Constellations? 289
  9.1.1 Model of the Multiple HAP System 290
9.2 Multiple HAP Constellation Planning 292
  9.2.1 Multiple HAPs Scenario with Directional HAP Antennas 292
9.3 User Antenna Pointing Error in Multiple HAP Systems 311
  9.3.1 Methods for Characterising User Antenna Pointing Error 312
  9.3.2 Effect of Pointing Error 317
### 9.4 Two-Ring Constellation Design for Multiple HAP Systems
- **9.4.1 Two-Ring Constellation Overview**

### 9.5 Constraints of Two-Ring Constellation Designs
- **9.5.1 Constellation Design Strategies**

### References

### 10 Networking Implications of Using Multiple HAP Constellations

- **10.1 Network Protocols**
  - **10.1.1 IP Foundations**
  - **10.1.2 Mobile IP Protocol**
  - **10.1.3 Hierarchical MIP**

- **10.2 Mobility Management in HAP-Based Communication Systems**
  - **10.2.1 Access-Level Mobility**
  - **10.2.2 Micro-Mobility**
  - **10.2.3 Macro-Mobility**
  - **10.2.4 Types of Mobile Users**
  - **10.2.5 Network Mobility**

- **10.3 Mobility and Backhaul Load Reduction Techniques**
  - **10.3.1 Placement of Home Agents**
  - **10.3.2 Multihoming Support**
  - **10.3.3 MN Movement Predictability**

### References

### Index