Index

Adaptive coding and modulation, 261–71
HAP broadband communications, 264
Advanced communication
techniques, 239–82
Adaptive coding and
modulation, 261–71
Cognitive radio, 241
Cross-layer design, 242
Diversity, 244–51
Dynamic spectrum management, 241
MIMO, 251–61
Radio resource management, 271–82
Smart antennas, 240

Aeronautics
Aerodynamic aerial platforms, 56
Aerostatic aerial platforms, 54
Atmosphere, 49
Flight/attitude control, 61–70
HAP characteristics, 70–72
HAP station-keeping, 62
HAP types, 54
Mobility models, 64–70
Operating environment, 49–54
Temperature profile, 51
Wind profile, 53
Antennas, 33, 75–87
Aperture, 82
Backhaul, 87
Implications of pointing errors, 315
Models, 84
Optimal pointing offset, 334
Pointing, 295
Printed, 84
Reflector, 83
Smart antennas, 240

Applications, 116
3G, 33, 37, 38, 148, 173
Backhaul, 172
Backhaul business model, 131
Broadband, 33, 38, 97, 121, 135, 173
Broadband mobile, 33
Broadcast, 38, 41, 90, 138
Broadcast/Multicast, 173
Disaster relief, 120, 141
Environmental Monitoring, 39
Event servicing, 38, 120, 141
HDTV, 33
Missions, 174
Radiolocation, 34
Surveillance, 39
WLAN to trains, 128, 172

Backhaul, 87, 225
Delivery methods, 111
Diversity, 87
Requirements, 109
Business Models, 115–68
3G, 148
Assumptions, 122, 125
Broadband, 135
Broadcast/Multicast, 138
Event servicing and disaster relief, 141
HAP operator centric model, 126, 152
Operating scenario, 122
Risk assessment, 164
Service provider centric model, 125
Business strategy, 120

Caching, 90
Channel assignment, 272, See also
 Dynamic spectrum management and
 Radio resource management
Channel reuse. See Spectrum reuse
CINR Models, 86, 291
Companies. See Organisations
Coverage. See HAP Coverage

Dynamic spectrum management, 241
Diversity, 90, 244–51
 Spatial diversity, 244, 248
 Frequency diversity, 244
 Temporal diversity, 244, 245
 Angle diversity, 244, 245
 Polarisation diversity, 244, 245

Energetics, 59–61
 Conventional energy sources, 59
 Remote energy sources, 61
 Renewable energy sources, 59
 Renewal energy cycle, 60

Free space optical. See Optical communications
FSO. See Optical communications

Handoff, 12
HAP
 3G, 19
 Aeronautical developments, 169
 Atmospheric wind profile, 326, 327
 Capacity and Coverage, 10
 Characteristics, 70–72
 Coverage, 81, 87

Mobility models, 64–70, 88
Network scenarios, 78
Operating environment, 183–89
Payloads, 89, 176
Position cylinder, 63, 88
Station keeping, 62, 88, 165
User scenarios, 77

HAP - satellite links, 229
 Platform to satellite links (PSL), 95
HAP networks. See Network protocols
HAP station keeping, 62, 88, 165 See also
 Aeronautics
 HeliNet location cylinder, 63
 Mobility models, 64–70
 HAP types, 4, 70–72, 119
History, 6
Hybrid links, 229

Interplatform links (IPL), 93, 235

Link budgets, 98
Load reduction techniques, 358

MIMO, 251–61
 Alamouti, 255, 256, 257, 258, 259, 271
 HAP broadband communications, 258
 Space-time coding, 254
 Spatial multiplexing, 252
 STBC, 254, 255, 257, 258, 259, 271
 STTC, 254, 257
 Virtual MIMO, 258
Missions. See Applications
Mobile IP, 346
Mobility management, 349
 Access-level mobility, 350
 Macro-mobility, 351
 Micro-mobility, 350
 Network mobility, 352
Mobility models. See HAP mobility models
Multiple HAPs, 12, 241, 289–343
 Constellation design, 323, 332
 Constellation planning, 292
 Constellation population, 305
 Eclipse, 327
 Implications of point errors, 311
 Peak power control, 301
Ring constellations, 295
Scenario, 290
Spectral efficiency, 296

Network architecture, 87, 345
Network protocols, 345–66
 Distributed Home Agent Protocol, 356
 Hierarchical MIP, 347
Home agent, 347
Home agent placement, 358
Movement predictability, 365
Multihoming support, 360
Optimized Route Cache Management Protocol, 356
Proxy Home Agents, 357
Proxy Mobile Anchor Points, 356
Route optimality, 364

Optical communications, 30, 219–37
 Atmospheric effects, 222
 Hazards, 221
 Optical transport networks, 234
 Physical layer aspects, 229
 System architecture, 229, 231
Turbulence, 225

Organisations, 26–43
 Angel Technologies, 7, 43, 88
 ATG, 40
 AV Inc, 38, 170
 BT, 40
 DLR, 27
 ERS srl, 28
 ESA, 8, 40
 ETRI, 13, 36
 JAXA, 8, 31
 Jozef Stefan Institute, 42
 KARI, 8, 35
 Lindstrand Technologies, 43
 Lockheed Martin, 9, 39, 170
 NASA, 9, 37
 NICT, 8, 32
 Politecnico di Torino, 9, 40, 42
 QinetiQ, 41
 Skystation, 7, 13, 43
 Space Data Corporation, 42
 StratXX, 9, 27
 University of Stuttgart, 9, 43
 University of York, 9, 27, 42
 VITO, 41

Payload configurations, 271
Payloads. See HAP payloads
 Optical, 220
Power subsystems. See Energetics
Projects, 26–43
 ASTRAEA, 18
 CAPANINA, 9, 28, 34, 35, 225, 229
 COST 297 - HAPCOS, 9, 31
 HeliNet, 9, 19, 42, 62, 63, 64, 88, 97
 Japanese, 31
 Korean, 35
 Pegasus, 41
 STROPEX, 225, 229, 234
 USEHAAS, 30, 169

Propagation, 13, 165, 186–215
 Absorption, 196, 198
 Channel Models, 189
 Cross polarisation impairments, 209
 DLR segment channel approach, 204
 Empirical channel models, 189
 General HAP model, 212
 Impact of surrounding environment, 210
 Multipath, 13, 22, 23, 183, 185, 186, 188, 189, 196, 199, 210, 212, 224, 300
 ONERA Markov channel model, 203
 Optical, 224
 Rain fading, 201
 Scintillation, 198
 Scintillation model, 200
 Virtual base station model, 274

Radio resource management, 271–83
Radio spectrum, 5, 15, 36
Regulation, 13–18, 13, 167
 Aeronautical, 16
 ITU-R Recommendations, 15
 Optical, 221
 Radio, 15, 186

Roadmaps
 Business perspective, 117–21
 Technical perspective, 171–74

Satellite links, 95
Spectrum reuse, 86, 174, 272, 289
<table>
<thead>
<tr>
<th>Standards, 18–26</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOCSIS, 24</td>
</tr>
<tr>
<td>DVB, 25</td>
</tr>
<tr>
<td>DVB-RCS, 26</td>
</tr>
<tr>
<td>DVB-S/S2, 25</td>
</tr>
<tr>
<td>IEEE 802, 20</td>
</tr>
<tr>
<td>IEEE 802.11, 21</td>
</tr>
<tr>
<td>IEEE 802.20, 23</td>
</tr>
<tr>
<td>IEEE 802.16, 18, 20, 21, 22, 23, 214, 265, 266, 271, 279, 282</td>
</tr>
<tr>
<td>IMT-2000, 19</td>
</tr>
<tr>
<td>LTE, 19</td>
</tr>
<tr>
<td>MMDS and LMDS, 24</td>
</tr>
<tr>
<td>Mobile, 19</td>
</tr>
<tr>
<td>System architectures, 87, 92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free Space Optical, 234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple HAPs, 289–343</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trials, 29, 32, 33, 229, 234</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPANINA STROPEX tests, 225</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User links, 98</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vehicle types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamic, 56–58</td>
</tr>
<tr>
<td>Aerostatic, 54–56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WiMAX, 6, 23, 120, 133, 143, 167, 175, 176, 191, 241, 265, 269, 270, 271</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also Standards</td>
</tr>
</tbody>
</table>