CONTENTS

PREFACE xv
CONTRIBUTORS xix

I INTRODUCTION 1

1 GLUTATHIONE AND THE SULFUR-CONTAINING AMINO ACIDS: AN OVERVIEW 3
John T. Brosnan and Margaret E. Brosnan
1.1 Introduction / 3
1.2 Why Sulfur-Containing Amino Acids? / 4
1.3 S-Adenosylmethionine, Nature's Wonder Cofactor / 7
1.4 Glutathione / 10
1.5 Taurine—the Second Essential Sulfur-Containing Amino Acid? / 13
1.6 Conclusions / 15
Acknowledgments / 15
References / 15

II CHEMISTRY AND METABOLISM OF GSH AND SULFUR AMINO ACIDS 19

2 SULFUR AMINO ACIDS CONTENTS OF DIETARY PROTEINS: DAILY INTAKE AND REQUIREMENTS 21
Cécile Bos, Jean-François Huneau, and Claire Gaudichon
2.1 Introduction / 21
2.2 Sulfur Amino Acids (SAA) Content of Dietary Protein / 21
2.3 Sulfur Amino Acid Intake / 24
10 GSH, SULFUR AMINO ACIDS, AND APOPTOSIS 211
Giuseppe Filomeni, Katia Aquilano, and Maria Rosa Ciriolo
10.1 Introduction / 211
10.2 Synthesis and Functions of GSH / 213
10.3 Apoptosis: A Programmed Mode to Die / 221
10.4 Role of GSH and Cysteine in Apoptosis / 224
10.5 Sulfur Amino Acids in Apoptosis / 239
10.6 Concluding Remarks and Recent Progress / 241
Acknowledgments / 242
References / 242

11 METHIONINE OXIDATION: IMPLICATION IN PROTEIN REGULATION, AGING, AND AGING-ASSOCIATED DISEASES 257
Jackob Moskovitz and Derek B. Oien
11.1 Introduction / 257
11.2 The Methionine Sulfoxide Reductase System / 258
11.3 Methionine Sulfoxide Reductase and Selenium / 259
11.4 Methionine Sulfoxide Reductase: A Knockout Mouse as a Model for Neurodegenerative Diseases / 262
11.5 Regulation of Protein Expression/Function by the Methionine Sulfoxide Reductase System / 264
11.6 Conclusions / 266
References / 267

12 SULFUR AMINO ACIDS, GLUTATHIONE, AND IMMUNE FUNCTION 273
Robert Grimble
12.1 The Biochemistry of Sulfur Amino Acids / 273
12.2 Sulfur Amino Acid and Glutathione Metabolism Following Infection and Injury / 275
12.3 Glutathione and the Immune System / 278
12.4 Mechanism of the Effect of Oxidants and Antioxidants on Inflammation and Immune Function / 280
12.5 Strategies for Modulating Tissue Glutathione Content and Influencing Immune Function / 282
12.6 Taurine and Immune Function / 284
12.7 Conclusions / 284
References / 285
18 HOMOCYSTEINE AND NEUROLOGICAL DISORDERS 441
Rodica E. Petrea and Sudha Seshadri

18.1 Introduction / 441
18.2 What is an “Abnormal” Plasma Homocysteine Level in Clinical Studies of Neurological Disease? / 443
18.3 Elevated Plasma Homocysteine and the Risk of Carotid Atherosclerosis / 444
18.4 Hyperhomocysteinemia and the Risk of Stroke / 444
18.5 Elevated Plasma Homocysteine Levels are Associated with the Risk of Dementia and Alzheimer’s Disease / 447
18.6 Parkinson’s Disease / 455
18.7 Epilepsy / 456
18.8 Conclusions / 456
18.9 Acknowledgments / 456
References / 456

19 GLUTATHIONE, SULFUR AMINO ACIDS, AND CANCER 471
José M. Estrela, Julian Carretero, and Angel Ortega

19.1 Introduction / 471
19.2 Carcinogenesis, Tumor Growth, and Cell Death / 472
19.3 Intercellular and Interorgan Transport of GSH in Tumor-Bearing Mammals / 479
19.4 GSH and the Interaction of Metastatic Cells with the Vascular Endothelium / 480
19.5 Adaptive Response in Invasive Cells / 483
19.6 GSH Depletion and the Sensitization of Cancer Cells to Therapy / 484
References / 487

VI GSH AND SULFUR AMINO ACIDS AS DRUGS AND NUTRACEUTICALS 501

20 GSH, GSH DERIVATIVES, AND ANTIVIRAL ACTIVITY 503
Anna Teresa Palamara, Lucia Nencioni, Rossella Sgarbanti, and Enrico Garaci

20.1 Introduction / 503
20.2 Intracellular GSH Status during Viral Infection / 504
20.3 Mechanism of Virus-Induced GSH Depletion / 506
20 Role of Constitutive GSH Levels in Controlling Cell Susceptibility to Viral Infection

20.4 Role of Constitutive GSH Levels in Controlling Cell Susceptibility to Viral Infection / 506

20.5 Effect of Intracellular GSH Depletion on Viral Replication / 508

20.6 Effect of Exogenous GSH and GSH Derivatives on Viral Replication / 511

20.7 In Vivo Effects of Systemic and Topical GSH Administration / 513

References / 515

21 N-ACETYL CYSTEINE AND CYTOPROTECTIVE EFFECTS AGAINST BRONCHOPULMONARY DAMAGE: FROM IN VITRO STUDIES TO CLINICAL APPLICATION

21.1 Introduction

Richard Dekhuijzen

21.2 Oxidative Stress in COPD / 519

21.3 Pharmacology of N-Acetylcysteine / 522

21.4 Pulmonary Antioxidant and Anti-Inflammatory Effects / 524

21.5 Nonpulmonary Effects / 526

21.6 Clinical Efficacy of N-Acetylcysteine in COPD / 528

21.7 Idiopathic Pulmonary Fibrosis / 531

21.8 Other Disorders / 532

21.9 Conclusions / 533

References / 534

22 TAURINE AS DRUG AND FUNCTIONAL FOOD COMPONENT

22.1 Introduction

Ramesh C. Gupta, Massimo D’Archivio, and Roberta Masella

22.2 The Unique Character of Taurine: Basis for Distinguished Behavior / 544

22.3 Functional Properties of Taurine / 546

22.4 Taurine Deficiency / 549

22.5 Taurine Concentration in Fetal Development and Neonatal Growth / 549

22.6 Beneficial Actions of Taurine / 551

22.7 Taurine and Diabetes / 554

22.8 Taurine and the Cardiovascular System / 555

22.9 Taurine and Endothelial Dysfunction / 557

22.10 Taurine and Lung Dysfunction / 558

22.11 Taurine and the Kidney / 559

References / 534
22.12 Retinal Protection / 559
22.13 Anticancer Activity of Taurine / 560
22.14 Taurine in Bone Tissue Formation and Inhibition of Bone Loss / 561
22.15 Taurine and Smoking / 562
22.16 Taurine as an Antialcohol Molecule / 563
22.17 Taurine as Functional Food and Supplement / 564
22.18 Conclusions / 565
References / 566