Contents

Preface to the Second Edition xiii
Symbols xv

1 Elementary Reactions in Ideal Reactors 1
 1.1 Material Balances 1
 1.1.1 Measures of Composition 4
 1.1.2 Measures of Reaction Rate 5
 1.2 Elementary Reactions 5
 1.2.1 Kinetic Theory of Gases 6
 1.2.2 Rate of Formation 6
 1.2.3 First-Order Reactions 8
 1.2.4 Second-Order Reactions with One Reactant 8
 1.2.5 Second-Order Reactions with Two Reactants 9
 1.2.6 Third-Order Reactions 9
 1.3 Reaction Order and Mechanism 9
 1.4 Ideal, Isothermal Reactors 12
 1.4.1 Ideal Batch Reactors 12
 1.4.2 Reactor Performance Measures 17
 1.4.3 Piston Flow Reactors 19
 1.4.4 Continuous Flow Stirred Tanks 24
 1.5 Mixing Times and Scaleup 26
 1.6 Dimensionless Variables and Numbers 31
 1.7 Batch Versus Flow and Tank Versus Tube 33
Suggested Further Readings 36
Problems 37

2 Multiple Reactions in Batch Reactors 41
 2.1 Multiple and Nonelementary Reactions 41
 2.1.1 Reaction Mechanisms 42
 2.1.2 Byproducts 43
 2.2 Component Reaction Rates for Multiple Reactions 43
 2.3 Multiple Reactions in Batch Reactors 44
 2.4 Numerical Solutions to Sets of First-Order ODEs 46
 2.5 Analytically Tractable Examples 52
 2.5.1 The n-th-Order Reaction 52
 2.5.2 Consecutive First-Order Reactions, A→B→C→··· 53
Contents

2.5.3 Quasi-Steady Hypothesis 56
2.5.4 Autocatalytic Reactions 62

2.6 Variable-Volume Batch Reactors 65
2.6.1 Systems with Constant Mass 65
2.6.2 Fed-Batch Reactors 71

2.7 Scaleup of Batch Reactions 73

2.8 Stoichiometry and Reaction Coordinates 74
2.8.1 Matrix Formulation of Reaction Rates 74
2.8.2 Stoichiometry of Single Reactions 76
2.8.3 Stoichiometry of Multiple Reactions 77

Suggested Further Readings 78

Problems 79

Appendix 2.1 Numerical Solution of Ordinary Differential Equations 84

3 Isothermal Piston Flow Reactors 89

3.1 Piston Flow with Constant Mass Flow 90
3.1.1 Gas Phase Reactions 94
3.1.2 Liquid Phase Reactions 104

3.2 Scaleup Relationships for Tubular Reactors 107
3.2.1 Scaling Factors 107
3.2.2 Scaling Factors for Tubular Reactors 112

3.3 Scaleup Strategies for Tubular Reactors 113
3.3.1 Scaling in Parallel and Partial Parallel 113
3.3.2 Scaling in Series for Constant-Density Fluids 114
3.3.3 Scaling in Series for Gas Flows 116
3.3.4 Scaling with Geometric Similarity 117
3.3.5 Scaling with Constant Pressure Drop 119

3.4 Scaling Down 120

3.5 Transpired-Wall Reactors 122

Suggested Further Readings 124

Problems 124

4 Stirred Tanks and Reactor Combinations 129

4.1 Continuous Flow Stirred Tank Reactors 129
4.2 Method of False Transients 131

4.3 CSTRs with Variable Density 135
4.3.1 Liquid Phase CSTRs 136
4.3.2 Computational Scheme for Variable-Density CSTRs 137
4.3.3 Gas Phase CSTRs 138

4.4 Scaling Factors for Liquid Phase Stirred Tanks 143

4.5 Combinations of Reactors 145
4.5.1 Series and Parallel Connections 145
4.5.2 Tanks in Series 148
8 Real Tubular Reactors in Laminar Flow

8.1 Flow in Tubes with Negligible Diffusion 280
 8.1.1 Criterion for Neglecting Radial Diffusion 281
 8.1.2 Mixing-Cup Averages 282
 8.1.3 Trapezoidal Rule 284
 8.1.4 Preview of Residence Time Theory 287
8.2 Tube Flows with Diffusion 288
 8.2.1 Convective Diffusion of Mass 288
 8.2.2 Convective Diffusion of Heat 290
 8.2.3 Use of Dimensionless Variables 290
 8.2.4 Criterion for Neglecting Axial Diffusion 291
8.3 Method of Lines 292
 8.3.1 Governing Equations for Cylindrical Coordinates 292
 8.3.2 Solution by Euler’s Method 294
 8.3.3 Accuracy and Stability 295
 8.3.4 Example Solutions 296
8.4 Effects of Variable Viscosity 301
 8.4.1 Governing Equations for Axial Velocity 302
 8.4.2 Calculation of Axial Velocities 303
 8.4.3 Calculation of Radial Velocities 304
8.5 Comprehensive Models 307
8.6 Performance Optimization 307
 8.6.1 Optimal Wall Temperatures 308
 8.6.2 Static Mixers 308
 8.6.3 Small Effective Diameters 310
8.7 Scaleup of Laminar Flow Reactors 311
 8.7.1 Isothermal Laminar Flow 311
 8.7.2 Nonisothermal Laminar Flow 312
Suggested Further Readings 312
Problems 313
Appendix 8.1 Convective Diffusion Equation 316
Appendix 8.2 External Resistance to Heat Transfer 317
Appendix 8.3 Finite-Difference Approximations 319

9 Packed Beds and Turbulent Tubes

9.1 Packed-Bed Reactors 324
 9.1.1 Incompressible Fluids 324
 9.1.2 Compressible Fluids in Packed Beds 333
9.2 Turbulence 334
 9.2.1 Turbulence Models 335
 9.2.2 Computational Fluid Dynamics 336
9.3 Axial Dispersion Model 336
 9.3.1 Danckwerts Boundary Conditions 339
 9.3.2 First-Order Reactions 340
Contents

9.3.3 Utility of the Axial Dispersion Model 342
9.3.4 Nonisothermal Axial Dispersion 344
9.3.5 Shooting Solutions to Two-Point Boundary Value Problems 344
9.3.6 Axial Dispersion with Variable Density 352
9.4 Scaleup and Modeling Considerations 352

Suggested Further Readings 352
Problems 353

10 Heterogeneous Catalysis 355

10.1 Overview of Transport and Reaction Steps 357
10.2 Governing Equations for Transport and Reaction 358
10.3 Intrinsic Kinetics 360
 10.3.1 Intrinsic Rate Expressions from Equality of Rates 361
 10.3.2 Models Based on a Rate-Controlling Step 363
 10.3.3 Recommended Models 367
10.4 Effectiveness Factors 368
 10.4.1 Pore Diffusion 368
 10.4.2 Film Mass Transfer 371
 10.4.3 Nonisothermal Effectiveness 372
 10.4.4 Deactivation 374
10.5 Experimental Determination of Intrinsic Kinetics 376

10.6 Unsteady Operation and Surface Inventories 380
Suggested Further Readings 381
Problems 382

11 Multiphase Reactors 385

11.1 Gas–Liquid and Liquid–Liquid Reactors 385
 11.1.1 Two-Phase Stirred Tank Reactors 386
 11.1.2 Measurement of Mass Transfer Coefficients 401
 11.1.3 Fluid–Fluid Contacting in Piston Flow 404
 11.1.4 Other Mixing Combinations 410
 11.1.5 Prediction of Mass Transfer Coefficients 412
11.2 Three-Phase Reactors 415
11.3 Moving-Solids Reactors 417
 11.3.1 Bubbling Fluidization 419
 11.3.2 Fast Fluidization 420
 11.3.3 Spouted Beds 420
 11.3.4 Liquid-Fluidized Beds 421
11.4 Noncatalytic Fluid–Solid Reactions 421
11.5 Scaleup of Multiphase Reactors 427
 11.5.1 Gas–Liquid Reactors 427
 11.5.2 Gas-Moving Solids Reactors 429
Contents

Suggested Further Readings 429
Problems 430

12 Biochemical Reaction Engineering 433

12.1 Enzyme Catalysis 434
 12.1.1 Michaelis–Menten Kinetics 434
 12.1.2 Inhibition, Activation, and Deactivation 438
 12.1.3 Immobilized Enzymes 439
 12.1.4 Reactor Design for Enzyme Catalysis 440

12.2 Cell Culture 444
 12.2.1 Growth Dynamics 446
 12.2.2 Reactors for Freely Suspended Cells 450
 12.2.3 Immobilized Cells 457
 12.2.4 Tissue Culture 458

12.3 Combinatorial Chemistry 458

Suggested Further Readings 459
Problems 459

13 Polymer Reaction Engineering 461

13.1 Polymerization Reactions 461
 13.1.1 Step Growth Polymerizations 462
 13.1.2 Chain Growth Polymerizations 466

13.2 Molecular Weight Distributions 468
 13.2.1 Distribution Functions and Moments 469
 13.2.2 Addition Rules for Molecular Weight 470
 13.2.3 Molecular Weight Measurements 470

13.3 Kinetics of Condensation Polymerizations 471
 13.3.1 Conversion 471
 13.3.2 Number- and Weight-Average Chain Lengths 472
 13.3.3 Molecular Weight Distribution Functions 473

13.4 Kinetics of Addition Polymerizations 478
 13.4.1 Living Polymers 479
 13.4.2 Free-Radical Polymerizations 481
 13.4.3 Transition Metal Catalysis 486
 13.4.4 Vinyl Copolymerizations 486

13.5 Polymerization Reactors 490
 13.5.1 Stirred Tanks with a Continuous Polymer Phase 492
 13.5.2 Tubular Reactors with a Continuous Polymer Phase 495
 13.5.3 Suspending-Phase Polymerizations 507

13.6 Scaleup Considerations 509
 13.6.1 Binary Polycondensations 509
 13.6.2 Self-Condensing Polycondensations 509
 13.6.3 Living Addition Polymerizations 510
 13.6.4 Vinyl Addition Polymerizations 510
Suggested Further Readings 511
Problems 511

14 Unsteady Reactors 513

14.1 Unsteady Stirred Tanks 513
 - 14.1.1 Transients in Isothermal CSTRs 515
 - 14.1.2 Nonisothermal Stirred Tank Reactors 523
14.2 Unsteady Piston Flow 526
14.3 Unsteady Convective Diffusion 529

Suggested Further Readings 530
Problems 530

15 Residence Time Distributions 535

15.1 Residence Time Theory 535
 - 15.1.1 Inert Tracer Experiments 536
 - 15.1.2 Means and Moments 539
15.2 Residence Time Models 540
 - 15.2.1 Ideal Reactors and Reactor Combinations 540
 - 15.2.2 Hydrodynamic Models 552
15.3 Reaction Yields 557
 - 15.3.1 First-Order Reactions 557
 - 15.3.2 Other Reactions 560
15.4 Extensions of Residence Time Theory 569
 - 15.4.1 Unsteady Flow Systems 570
 - 15.4.2 Contact Times 570
 - 15.4.3 Thermal Times 571
15.5 Scaleup Considerations 571

Suggested Further Readings 572
Problems 572

16 Reactor Design at Meso-, Micro-, and Nanoscales 575

16.1 Mesoscale Reactors 577
 - 16.1.1 Flow in Rectangular Geometries 578
 - 16.1.2 False Transients Applied to PDEs 580
 - 16.1.3 Jet Impingement Mixers 584
16.2 Microscale Reactors 584
 - 16.2.1 Mixing Times 585
 - 16.2.2 Radial or Cross-Channel Diffusion 586
 - 16.2.3 False Transients Versus Method of Lines 587
 - 16.2.4 Axial Diffusion in Microscale Ducts 587
 - 16.2.5 Second-Order Reactions with Unmixed Feed 591
 - 16.2.6 Microelectronics 594
 - 16.2.7 Chemical Vapor Deposition 595
xii Contents

16.3 Nanoscale Reactors 596
 16.3.1 Self-Assembly 597
 16.3.2 Molecular Dynamics 598
16.4 Scaling, Up or Down 599
Suggested Further Readings 599
Problems 599

References 601
Index 603