Contents

Abstract ix
Preface xi
Acknowledgments xiii
About the Companion Website xv

1 Historical Notes 1
1.1 Introduction 1
1.2 On the Wings of Dependent Variables 2
1.3 From Bernoulli to Markov 5

2 From Observation to Simulation 9
2.1 Introduction 9
2.2 Stochastic Matrices 9
2.3 Transition Probabilities 11
2.4 The Simulation of a Two-State Markov Chain 14

3 Building the Stochastic Matrix 25
3.1 Introduction 25
3.2 Building a Stochastic Matrix from Events 25
3.3 Building a Stochastic Matrix from Percentages 32

4 Predictions Using Two-State Markov Chains 37
4.1 Introduction 37
4.2 Performing the Predictions by Using the Stochastic Matrix 37
4.3 The Steady State of a Markov Chain 46
4.4 The Long-Run Distribution of a Markov Chain 55

5 Predictions Using n-State Markov Chains 61
5.1 Introduction 61
5.2 Predictions by Using the Three-State Markov Chain 61
Contents

5.3 Predictions by Using the Four-State Markov Chain 71
5.4 Predictions by Using n-State Markov Chains 80
5.5 Markov Chain Modeling on Measurements 84

6 Absorbing Markov Chains 93
  6.1 Introduction 93
  6.2 The Absorbing State 93

7 The Average Time Spent in Each State 99
  7.1 Introduction 99
  7.2 The Proportion of Balls in the System 99
  7.3 The Average Time Spent in A Particular State 100
  7.4 Exemplification of the Average Time and Proportions 101

8 Discussions on Different Configurations of Chains 107
  8.1 Introduction 107
  8.2 Examples of Two-State Diagrams 113
  8.3 Examples of Three-State Diagrams 115
  8.4 Examples of Four-State Diagrams 117
  8.5 Examples of State Diagrams Divided into Classes 123
  8.6 Examples of State Diagrams with Absorbing States 127
  8.7 The Gambler’s Ruin 128

9 The Simulation of an n-State Markov Chain 131
  9.1 Introduction 131
  9.2 The Simulation of Behavior 131
  9.3 Simulation of Different Chain Configurations 145

A Supporting Algorithms in PHP 165

B Supporting Algorithms in Javascript 193

C Syntax Equivalence between Languages 223

Glossary 225
References 227
Index 231