Contents

1 Background of the Smart Grid 1
 1.1 Motivations and Objectives of the Smart Grid 1
 1.1.1 Better Renewable Energy Resource Adaption 2
 1.1.2 Grid Operation Efficiency Advancement 3
 1.1.3 Grid Reliability and Security Improvement 4
 1.2 Smart Grid Communications Architecture 5
 1.2.1 Conceptual Domain Model 6
 1.2.2 Two-Way Communications Network 7
 1.3 Applications and Requirements 9
 1.3.1 Demand Response 9
 1.3.2 Advanced Metering Infrastructure 10
 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11
 1.3.4 Communication Networks and Cybersecurity 12
 1.4 The Rest of the Book 13

2 Smart Grid Communication Infrastructures 15
 2.1 An ICT Framework for the Smart Grid 15
 2.1.1 Roles and Benefits of an ICT Framework 15
 2.1.2 An Overview of the Proposed ICT Framework 16
 2.2 Entities in the ICT Framework 18
 2.2.1 Internal Data Collectors 18
 2.2.2 Control Centers 20
 2.2.3 Power Generators 22
 2.2.4 External Data Sources 23
 2.3 Communication Networks and Technologies 23
 2.3.1 Private and Public Networks 23
3 Self-Sustaining Wireless Neighborhood-Area Network Design 35
3.1 Overview of the Proposed NAN 35
3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35
3.1.2 Structure of the Proposed NAN 37
3.2 Preliminaries 38
3.2.1 Charging Rate Estimate 39
3.2.2 Battery-Related Issues 40
3.2.3 Path Loss Model 42
3.3 Problem Formulations and Solutions in the NAN Design 44
3.3.1 The Cost Minimization Problem 44
3.3.2 Optimal Number of Gateways 48
3.3.3 Geographical Deployment Problem for Gateway DAPs 51
3.3.4 Global Uplink Transmission Power Efficiency 54
3.4 Numerical Results 56
3.4.1 Evaluation of the Optimal Number of Gateways 56
3.4.2 Evaluation of the Global Power Efficiency 56
3.4.3 Evaluation of the Global Uplink Transmission Rates 58
3.4.4 Evaluation of the Global Power Consumption 59
3.4.5 Evaluation of the Minimum Cost Problem 59
3.5 Case Study 63
3.6 Summary 65

4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67
4.1 Background and Related Work 67
4.1.1 Motivations and Background 67
4.1.2 Related Work 69
4.2 System Model 70
4.3 Preliminaries 71
4.3.1 Mathematical Formulation 72
4.3.2 Energy Efficiency Utility Function 73
4.4 Hierarchical Uplink Transmission Power Control Scheme 75
4.4.1 DGD Level Game 76
4.4.2 BGD Level Game 77
4.5 Analysis of the Proposed Schemes 78
4.5.1 Estimation of \(B \) and \(D \) 78
4.5.2 Analysis of the Proposed Stackelberg Game 80
4.5.3 Algorithms to Approach NE and SE 84
4.6 Numerical Results 85
4.6.1 Simulation Settings 85
4.6.2 Estimate of \(D \) and \(B \) 86
4.6.3 Data Rate Reliability Evaluation 87
4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88
4.7 Summary 90

5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91
5.1 Background and Related Work 91
5.1.1 Background and Motivation 91
5.1.2 Related Work 93
5.2 Network Model 94
5.3 Problem Formulation 96
5.4 Proposed Power Allocation Schemes 99
5.4.1 Minimizing Total Power Usage 100
5.4.2 Maximizing Power Efficiency 101
5.4.3 Uniform Delay 104
5.4.4 Uniform Transmission Rate 104
5.5 Distributed Power Allocation Schemes 105
5.6 Numerical Results and A Case Study 107
5.6.1 Simulation Settings 107
5.6.2 Comparison of the Centralized Schemes 108
5.6.3 Case Study 113
5.7 Summary 113
6 A Real-Time Information-Based Demand-Side Management System 115
6.1 Background and Related Work 115
6.1.1 Background 115
6.1.2 Related Work 117
6.2 System Model 118
6.2.1 The Demand-Side Power Management System 118
6.2.2 Mathematical Modeling 120
6.2.3 Energy Cost and Unit Price 122
6.3 Centralized DR Approaches 124
6.3.1 Minimize Peak-to-Average Ratio 124
6.3.2 Minimize Total Cost of Power Generation 125
6.4 Game Theoretical Approaches 128
6.4.1 Formulated Game 128
6.4.2 Game Theoretical Approach 1: Locally Computed Smart Pricing 129
6.4.3 Game Theoretical Approach 2: Semifixed Smart Pricing 131
6.4.4 Mixed Approach: Mixed GA1 and GA2 132
6.5 Precision and Truthfulness of the Proposed DR System 132
6.6 Numerical and Simulation Results 132
6.6.1 Settings 132
6.6.2 Comparison of P_1, P_2 and GA1 135
6.6.3 Comparison of Different Distributed Approaches 136
6.6.4 The Impact from Energy Storage Unit 141
6.6.5 The Impact from Increasing Renewable Energy 143
6.7 Summary 145

7 Intelligent Charging for Electric Vehicles—Scheduling in Battery Exchanges Stations 147
7.1 Background and Related Work 147
7.1.1 Background and Overview 147
7.1.2 Related Work 149
7.2 System Model 150
7.2.1 Overview of the Studied System 150
7.2.2 Mathematical Formulation 151
7.2.3 Customer Estimation 152
7.3 Load Scheduling Schemes for BESs 154
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1</td>
<td>Constraints for a BES s_i</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>7.3.2</td>
<td>Minimizing PAR: Problem Formulation and Analysis</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>7.3.3</td>
<td>Problem Formulation and Analysis for Minimizing Costs</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>7.3.4</td>
<td>Game Theoretical Approach</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Simulation Analysis and Results</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>7.4.1</td>
<td>Settings for the Simulations</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>7.4.2</td>
<td>Impact of the Proposed DSM on PAR</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>7.4.3</td>
<td>Evaluation of BESs Equipment Settings</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>7.4.3.1</td>
<td>Number of Charging Ports</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>7.4.3.2</td>
<td>Maximum Number of Fully Charged Batteries</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>7.4.3.3</td>
<td>Preparation at the Beginning of Each Day</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>7.4.3.4</td>
<td>Impact on PAR from BESs</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>7.4.4</td>
<td>Evaluations of the Game Theoretical Approach</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Summary</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Big Data Analytics and Cloud Computing in the Smart Grid</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Background and Motivation</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>8.1.1</td>
<td>Big Data Era</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>8.1.2</td>
<td>The Smart Grid and Big Data</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Pricing and Energy Forecasts in Demand Response</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>8.2.1</td>
<td>An Overview of Pricing and Energy Forecasts</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>8.2.2</td>
<td>A Case Study of Energy Forecasts</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Attack Detection</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>8.3.1</td>
<td>An Overview of Attack Detection in the Smart Grid</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>8.3.2</td>
<td>Current Problems and Techniques</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Cloud Computing in the Smart Grid</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>8.4.1</td>
<td>Basics of Cloud Computing</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>8.4.2</td>
<td>Advantages of Cloud Computing in the Smart Grid</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>8.4.3</td>
<td>A Cloud Computing Architecture for the Smart Grid</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Summary</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A Secure Data Learning Scheme for Big Data Applications in the Smart Grid</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Background and Related Work</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>9.1.1</td>
<td>Motivation and Background</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>9.1.2</td>
<td>Related Work</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Preliminaries</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>9.2.1</td>
<td>Classic Centralized Learning Scheme</td>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>
9.2.2 Supervised Learning Models 191
 9.2.2.1 Supervised Regression Learning Model 191
 9.2.2.2 Regularization Term 191
9.2.3 Security Model 192
9.3 Secure Data Learning Scheme 193
 9.3.1 Data Learning Scheme 193
 9.3.2 The Proposed Security Scheme 194
 9.3.2.1 Privacy Scheme 194
 9.3.2.2 Identity Protection 195
 9.3.3 Analysis of the Learning Process 197
 9.3.4 Analysis of the Security 197
9.4 Smart Metering Data Set Analysis—A Case Study 198
 9.4.1 Smart Grid AMI and Metering Data Set 198
 9.4.2 Regression Study 200
9.5 Conclusion and Future Work 203

10 Security Challenges in the Smart Grid
 Communication Infrastructure 205
 10.1 General Security Challenges 205
 10.1.1 Technical Requirements 205
 10.1.2 Information Security Domains 207
 10.1.3 Standards and Interoperability 207
 10.2 Logical Security Architecture 207
 10.2.1 Key Concepts and Assumptions 207
 10.2.2 Logical Interface Categories 209
 10.3 Network Security Requirements 210
 10.3.1 Utility-Owned Private Networks 210
 10.3.2 Public Networks in the Smart Grid 212
 10.4 Classification of Attacks 213
 10.4.1 Component-Based Attacks 213
 10.4.2 Protocol-Based Attacks 214
 10.5 Existing Security Solutions 215
 10.6 Standardization and Regulation 216
 10.6.1 Commissions and Considerations 217
 10.6.2 Selected Standards 217
 10.7 Summary 219

11 Security Schemes for AMI Private Networks 221
 11.1 Preliminaries 221
 11.1.1 Security Services 221
11.2 Initial Authentication
11.2.1 An Overview of the Proposed Authentication Process
11.2.1.1 DAP Authentication Process
11.2.2 The Authentication Handshake Protocol
11.2.3 Security Analysis
11.3 Proposed Security Protocol in Uplink Transmissions
11.3.1 Single-Traffic Uplink Encryption
11.3.2 Multiple-Traffic Uplink Encryption
11.3.3 Decryption Process in Uplink Transmissions
11.3.4 Security Analysis
11.4 Proposed Security Protocol in Downlink Transmissions
11.4.1 Broadcast Control Message Encryption
11.4.2 One-to-One Control Message Encryption
11.4.3 Security Analysis
11.5 Domain Secrets Update
11.5.1 AS Public/Private Keys Update
11.5.2 Active Secret Key Update
11.5.3 Preshared Secret Key Update
11.6 Summary

12 Security Schemes for Smart Grid Communications over Public Networks
12.1 Overview of the Proposed Security Schemes
12.1.1 Background and Motivation
12.1.2 Applications of the Proposed Security Schemes in the Smart Grid
12.2 Proposed ID-Based Scheme
12.2.1 Preliminaries
12.2.2 Identity-Based Signcryption
12.2.2.1 Setup
12.2.2.2 Keygen
12.2.2.3 Signcryption
12.2.2.4 Decryption
12.2.2.5 Verification
12.2.3 Consistency of the Proposed IBSC Scheme
12.2.4 Identity-Based Signature
Contents

12.2.4.1 Signature 248
12.2.4.2 Verification 248
12.2.5 Key Distribution and Symmetrical Cryptography 248
12.3 Single Proxy Signing Rights Delegation 249
12.3.1 Certificate Distribution by the Local Control Center 249
12.3.2 Signing Rights Delegation by the PKG 250
12.3.3 Single Proxy Signature 250
12.4 Group Proxy Signing Rights Delegation 251
12.4.1 Certificate Distribution 251
12.4.2 Partial Signature 251
12.4.3 Group Signature 251
12.5 Security Analysis of the Proposed Schemes 252
12.5.1 Assumptions for Security Analysis 252
12.5.2 Identity-Based Encryption Security 253
12.5.2.1 Security Model 253
12.5.2.2 Security Analysis 253
12.5.3 Identity-Based Signature Security 255
12.5.3.1 Security Models 255
12.5.3.2 Security Analysis 256
12.6 Performance Analysis of the Proposed Schemes 258
12.6.1 Computational Complexity of the Proposed Schemes 258
12.6.2 Choosing Bilinear Paring Functions 259
12.6.3 Numerical Results 260
12.7 Conclusion 261

13 Open Issues and Possible Future Research Directions 263
13.1 Efficient and Secure Cloud Services and Big Data Analytics 263
13.2 Quality-of-Service Framework 263
13.3 Optimal Network Design 264
13.4 Better Involvement of Green Energy 265
13.5 Need for Secure Communication Network Infrastructure 265
13.6 Electrical Vehicles 265

Reference 267

Index 287