Contents

Preface xv
List of Abbreviations xxi

1 Introduction to Field Programmable Gate Arrays 1
1.1 Introduction 1
1.2 Field Programmable Gate Arrays 2
1.2.1 Rise of Heterogeneous Computing Platforms 4
1.2.2 Programmability and DSP 5
1.3 Influence of Programmability 6
1.4 Challenges of FPGAs 8
Bibliography 9

2 DSP Basics 11
2.1 Introduction 11
2.2 Definition of DSP Systems 12
2.2.1 Sampling 14
2.2.2 Sampling Rate 14
2.3 DSP Transformations 16
2.3.1 Discrete Fourier Transform 16
2.3.2 Fast Fourier Transform 17
2.3.3 Discrete Cosine Transform 18
2.3.4 Wavelet Transform 19
2.4 Filters 20
2.4.1 Finite Impulse Response Filter 20
2.4.2 Infinite Impulse Response Filter 24
2.4.3 Wave Digital Filters 25
2.5 Adaptive Filtering 29
2.5.1 Applications of Adaptive Filters 30
2.5.2 Adaptive Algorithms 30
2.5.3 LMS Algorithm 31
2.5.4 RLS Algorithm 32
2.5.5 Squared Givens Rotations 36
2.6 Final Comments 38
Bibliography 38
Contents

3 Arithmetic Basics 41
 3.1 Introduction 41
 3.2 Number Representations 42
 3.2.1 Signed Magnitude 43
 3.2.2 One’s Complement 43
 3.2.3 Two’s Complement 44
 3.2.4 Binary Coded Decimal 44
 3.2.5 Fixed-Point Representation 45
 3.2.6 Floating-Point Representation 46
 3.3 Arithmetic Operations 47
 3.3.1 Adders 47
 3.3.2 Adders and Subtracters 49
 3.3.3 Adder Final Remarks 51
 3.3.4 Multipliers 51
 3.4 Alternative Number Representations 55
 3.4.1 Signed Digit Number Representation 55
 3.4.2 Logarithmic Number Systems 56
 3.4.3 Residue Number Systems 57
 3.4.4 CORDIC 58
 3.5 Division 59
 3.5.1 Recurrence Division 59
 3.5.2 Division by Functional Iteration 60
 3.6 Square Root 60
 3.6.1 Digit Recurrence Square Root 61
 3.6.2 Square Root by Functional Iteration 61
 3.6.3 Initial Approximation Techniques 62
 3.7 Fixed-Point versus Floating-Point 65
 3.8 Conclusions 66
 Bibliography 67

4 Technology Review 70
 4.1 Introduction 70
 4.2 Implications of Technology Scaling 71
 4.3 Architecture and Programmability 72
 4.4 DSP Functionality Characteristics 74
 4.4.1 Computational Complexity 74
 4.4.2 Parallelism 75
 4.4.3 Data Independence 75
 4.4.4 Arithmetic Requirements 76
 4.4.5 Processor Classification 76
 4.5 Microprocessors 76
 4.5.1 ARM Microprocessor Architecture Family 78
 4.5.2 Parallella Computer 80
 4.6 DSP Processors 82
 4.6.1 Evolutions in DSP Microprocessors 83
 4.6.2 TMS320C6678 Multicore DSP 85
4.7 Graphical Processing Units 86
4.7.1 GPU Architecture 87
4.8 System-on-Chip Solutions 88
4.8.1 Systolic Arrays 89
4.9 Heterogeneous Computing Platforms 91
4.10 Conclusions 92
Bibliography 92

5 Current FPGA Technologies 94
5.1 Introduction 94
5.2 Toward FPGAs 95
5.2.1 Early FPGA Architectures 97
5.3 Altera Stratix® V and 10 FPGA Family 98
5.3.1 ALMs 99
5.3.2 Memory Organization 100
5.3.3 DSP Processing Blocks 101
5.3.4 Clocks and Interconnect 103
5.3.5 Stratix® 10 innovations 103
5.4 Xilinx Ultrascale™/Virtex-7 FPGA Families 103
5.4.1 Configurable Logic Block 104
5.4.2 Memory 105
5.4.3 Digital Signal Processing 106
5.5 Xilinx Zynq FPGA Family 107
5.6 Lattice iCE40isp FPGA Family 108
5.6.1 Programmable Logic Blocks 109
5.6.2 Memory 110
5.6.3 Digital Signal Processing 110
5.7 MicroSemi RTG4 FPGA Family 111
5.7.1 Programmable Logic Blocks 111
5.7.2 Memory 111
5.7.3 Mathblocks for DSP 112
5.8 Design Strategies for FPGA-based DSP Systems 112
5.8.1 DSP Processing Elements 112
5.8.2 Memory Organization 113
5.8.3 Other FPGA-Based Design Guidelines 113
5.9 Conclusions 114
Bibliography 114

6 Detailed FPGA Implementation Techniques 116
6.1 Introduction 116
6.2 FPGA Functionality 117
6.2.1 LUT Functionality 117
6.2.2 DSP Processing Elements 120
6.2.3 Memory Availability 121
6.3 Mapping to LUT-Based FPGA Technology 123
6.3.1 Reductions in Inputs/Outputs 123
6.3.2 Controller Design 125
6.4 Fixed-Coefficient DSP 125
 6.4.1 Fixed-Coefficient FIR Filtering 126
 6.4.2 DSP Transforms 127
 6.4.3 Fixed-Coefficient FPGA Techniques 130
6.5 Distributed Arithmetic 130
 6.5.1 DA Expansion 130
 6.5.2 DA Applied to FPGA 132
6.6 Reduced-Coefficient Multiplier 133
 6.6.1 DCT Example 134
 6.6.2 RCM Design Procedure 134
 6.6.3 FPGA Multiplier Summary 137
6.7 Conclusions 137

Bibliography 138

7 Synthesis Tools for FPGAs 140
 7.1 Introduction 140
 7.2 High-Level Synthesis 141
 7.2.1 HLS from C-Based Languages 143
 7.3 Xilinx Vivado 143
 7.4 Control Logic Extraction Phase Example 144
 7.5 Altera SDK for OpenCL 145
 7.6 Other HLS Tools 147
 7.6.1 Catapult 147
 7.6.2 Impulse-C 147
 7.6.3 GAUT 148
 7.6.4 CAL 148
 7.6.5 LegUp 150
 7.7 Conclusions 150

Bibliography 150

8 Architecture Derivation for FPGA-based DSP Systems 152
 8.1 Introduction 152
 8.2 DSP Algorithm Characteristics 153
 8.2.1 Further Characterization 154
 8.3 DSP Algorithm Representations 157
 8.3.1 SFG Descriptions 158
 8.3.2 DFG Descriptions 158
 8.4 Pipelining DSP Systems 160
 8.4.1 Retiming 160
 8.4.2 Cut-Set Theorem 163
 8.4.3 Application of Delay Scaling 164
 8.4.4 Calculation of Pipelining Period 167
 8.4.5 Longest Path Matrix Algorithm 167
 8.5 Parallel Operation 170
 8.5.1 Unfolding 173
 8.5.2 Folding 174
 8.6 Conclusions 178

Bibliography 179
Contents

9 Complex DSP Core Design for FPGA 180

9.1 Introduction 180
9.2 Motivation for Design for Reuse 181
9.3 Intellectual Property Cores 182
9.4 Evolution of IP Cores 184
9.4.1 Arithmetic Libraries 185
9.4.2 Complex DSP Functions 187
9.4.3 Future of IP Cores 187
9.5 Parameterizable (Soft) IP Cores 187
9.5.1 Identifying Design Components Suitable for Development as IP 189
9.5.2 Identifying Parameters for IP Cores 190
9.5.3 Development of Parameterizable Features 193
9.5.4 Parameterizable Control Circuitry 194
9.5.5 Application to Simple FIR Filter 194
9.6 IP Core Integration 195
9.6.1 Design Issues 196
9.7 Current FPGA-based IP Cores 197
9.8 Watermarking IP 198
9.9 Summary 198

Bibliography 199

10 Advanced Model-Based FPGA Accelerator Design 200

10.1 Introduction 200
10.2 Dataflow Modeling of DSP Systems 201
10.2.1 Process Networks 201
10.2.2 Synchronous Dataflow 202
10.2.3 Cyclo-static Dataflow 203
10.2.4 Multidimensional Synchronous Dataflow 204
10.3 Architectural Synthesis of Custom Circuit Accelerators from DFGs 204
10.4 Model-Based Development of Multi-Channel Dataflow Accelerators 205
10.4.1 Multidimensional Arrayed Dataflow 207
10.4.2 Block and Interleaved Processing in MADF 209
10.4.3 MADF Accelerators 209
10.4.4 Pipelined FE Derivation for MADF Accelerators 210
10.4.5 WBC Configuration 213
10.4.6 Design Example: Normalized Lattice Filter 214
10.4.7 Design Example: Fixed Beamformer System 216
10.5 Model-Based Development for Memory-Intensive Accelerators 219
10.5.1 Synchronous Dataflow Representation of FSME 219
10.5.2 Cyclo-static Representation of FSME 221
10.6 Summary 223

References 223

11 Adaptive Beamformer Example 225

11.1 Introduction to Adaptive Beamforming 226
11.2 Generic Design Process 226
11.2.1 Adaptive Beamforming Specification 229
11.2.2 Algorithm Development 230
Contents

11.3 Algorithm to Architecture 231
11.3.1 Dependence Graph 232
11.3.2 Signal Flow Graph 233
11.4 Efficient Architecture Design 235
11.4.1 Scheduling the QR Operations 239
11.5 Generic QR Architecture 240
11.5.1 Processor Array 242
11.6 Retiming the Generic Architecture 246
11.6.1 Retiming QR Architectures 250
11.7 Parameterizable QR Architecture 253
11.7.1 Choice of Architecture 254
11.7.2 Parameterizable Control 256
11.7.3 Linear Architecture 256
11.7.4 Sparse Linear Architecture 258
11.7.5 Rectangular Architecture 262
11.7.6 Sparse Rectangular Architecture 264
11.7.7 Generic QR Cells 264
11.8 Generic Control 266
11.8.1 Generic Input Control for Linear and Sparse Linear Arrays 266
11.8.2 Generic Input Control for Rectangular and Sparse Rectangular Arrays 267
11.8.3 Effect of Latency on the Control Seeds 268
11.9 Beamformer Design Example 269
11.10 Summary 271

References 271

12 FPGA Solutions for Big Data Applications 273
12.1 Introduction 273
12.2 Big Data 274
12.3 Big Data Analytics 275
12.3.1 Inductive Learning 276
12.3.2 Data Mining Algorithms 277
12.3.3 Classification 277
12.3.4 Regression 278
12.3.5 Clustering 279
12.3.6 The Right Approach 279
12.4 Acceleration 280
12.4.1 Scaling Up or Scaling Out 280
12.4.2 FPGA-based System Developments 281
12.4.3 FPGA Implementations 281
12.4.4 Heston Model Acceleration Using FPGA 282
12.5 k-Means Clustering FPGA Implementation 283
12.5.1 Computational Complexity Analysis of k-Means Algorithm 285
12.6 FPGA-Based Soft Processors 286
12.6.1 IPPro FPGA-Based Processor 287
12.7 System Hardware 290
12.7.1 Distance Calculation Block 291
12.7.2 Comparison Block 292
Contents

12.7.3 Averaging 292
12.7.4 Optimizations 292
12.8 Conclusions 293

Bibliography 293

13 Low-Power FPGA Implementation 296
13.1 Introduction 296
13.2 Sources of Power Consumption 297
13.2.1 Dynamic Power Consumption 297
13.2.2 Static power consumption 299
13.3 FPGA Power Consumption 300
13.3.1 Clock Tree Isolation 302
13.4 Power Consumption Reduction Techniques 302
13.5 Dynamic Voltage Scaling in FPGAs 303
13.6 Reduction in Switched Capacitance 305
13.6.1 Data Reordering 305
13.6.2 Pipelining 306
13.6.3 Locality 311
13.6.4 Data Mapping 313
13.7 Final Comments 316

Bibliography 317

14 Conclusions 319
14.1 Introduction 319
14.2 Evolution in FPGA Design Approaches 320
14.3 Big Data and the Shift toward Computing 320
14.4 Programming Flow for FPGAs 321
14.5 Support for Floating-Point Arithmetic 322
14.6 Memory Architectures 322

Bibliography 323

Index 325