Index

a
Acceleration, 280
Accelerator, 205
Adaptive filter, 29
 adaptive beamforming, 30
 algorithms, 30
 applications, 30
 LMS, 31
 LS weights, 33
 RLS, 32
 tap weight, 32
Adder, 102, 106
 1-bit, 47, 48
 carry-save, 53
 comparison, 51
 n-bit, 49
 SBNR, 56
ALM, 100
Altera
 adaptive logic module, 99
 DSP block, 101, 102
 HyperFlex, 103
 M20K, 100
 memory, 100
 MLAB, 100
 Stratix 10, 103
 Stratix V, 98
Analogue filter networks, 26
AND matrix, 95
Antennae, 226

Applications
 beamformer, 225
 digital receiver, 314
 fixed beamformer, 216
 lattice filter, 169
 motion estimation, 219
 security, 275
Architectural synthesis, 204
Architecture
 choice, 254
 generic, 246
 Manhattan, 97
Arithmetic
 binary coded decimal, 44
 CORDIC, 58
 fixed-point, 45
 floating-point, 66
 logarithmic number systems, 56
 one’s complement, 43
 residue number systems, 57
 signed digit number representation, 55
 signed magnitude, 43
 two’s complement, 44
Arithmetic requirements, 76
ARM, 107
Array mapping, 235
 linear, 243
 rectangular, 244
 sparse linear, 244
 sparse rectangular, 245
Index

b
Bayesian classifiers, 278
Beamformer, 206, 225, 269
adapative, 226
specifications, 229
Big data, 273
Black–Scholes, 282
Block processing, 209
Block RAM, 122, 219
c
C6000 DSP, 86
CAL, 148
Catapult, 147
CIF, 219
Circuit architecture, 231
Classification, 277
CLB, 105
Clock, 4, 103
Clock networks, 103
Clock tree isolation, 302
Clustering, 279
CMOS inverter, 298
Complex multiplier, 121
Computational complexity, 74
Consistency, 202
Control circuitry, 256
Controller, 125
CPU, 72
DSP microprocessors, 82
Epiphany, 80
TMS320C667, 85
CUDA, 87
Current block, 122, 219
Custom circuit, 200
Cut-set theorem, 163
d
DA, 130
Data
independence, 75
inference, 276
value, 275
variety, 274
velocity, 274
veracity, 275
volume, 274
Data analytics, 275
Data bus, 82
Data mapping, 313
Data mining, 277
Data reordering, 305
Dataflow, 201
cyclo-static dataflow, 201
dataflow process networks, 201
firing, 201
homogeneous, 202
multi-rate, 202
multidimensional, 201
multidimensional arrayed, 207
single-rate, 202
synchronous dataflow, 201
Dataflow accelerator, 209
DCT, 134
Delay scaling, 163
Dennard’s law, 71
Dependence graph, 232
Design
flow, 9
languages, 8
Design choices, 228
Design reuse, 138
DFG, 158
Digital receiver, 206, 314
Digitization, 12
Discrete cosine transform, 134
Discrete Fourier transform, 16
Discrete wavelet transform, 19
Distributed arithmetic, 130
Distributed RAM, 212, 218
Division
approximation, 63
DRx, 206
DSP
fixed-coefficient, 126
interleaving, 156
parallelism, 156
pipelining, 156, 160
processing elements, 120
recursive filters, 155
DSP characteristics, 74, 153
DSP description
DFG, 158
SFG, 158
Index

<table>
<thead>
<tr>
<th>DSP microprocessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS32010, 82</td>
</tr>
<tr>
<td>TMS320C667, 85</td>
</tr>
<tr>
<td>DSP microprocessors, 82</td>
</tr>
<tr>
<td>DSP system, 12</td>
</tr>
<tr>
<td>cuts, 161</td>
</tr>
<tr>
<td>examples, 13</td>
</tr>
<tr>
<td>sampling rate, 14</td>
</tr>
<tr>
<td>DSP transformations, 16</td>
</tr>
<tr>
<td>DSP transforms, 127</td>
</tr>
<tr>
<td>Dynamic voltage scaling, 303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge, 201</td>
</tr>
<tr>
<td>Epiphany, 80, 81</td>
</tr>
<tr>
<td>eSDK, 80</td>
</tr>
<tr>
<td>Euclidean distance, 285</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Fourier transform, 17, 314</td>
</tr>
<tr>
<td>FDE, 218</td>
</tr>
<tr>
<td>Field programmable gate array, 2, 94</td>
</tr>
<tr>
<td>FIFO, 202</td>
</tr>
<tr>
<td>Filter, 20</td>
</tr>
<tr>
<td>finite impulse response, 20</td>
</tr>
<tr>
<td>infinite impulse response, 24</td>
</tr>
<tr>
<td>WDF, 25</td>
</tr>
<tr>
<td>Finance</td>
</tr>
<tr>
<td>Black–Scholes, 282</td>
</tr>
<tr>
<td>Heston, 282</td>
</tr>
<tr>
<td>Finite state machine, 125</td>
</tr>
<tr>
<td>FIR filter, 20, 75, 126, 309</td>
</tr>
<tr>
<td>fixed-coefficient, 126</td>
</tr>
<tr>
<td>retimed, 162</td>
</tr>
<tr>
<td>Floating-point, 66</td>
</tr>
<tr>
<td>Folding, 174</td>
</tr>
<tr>
<td>FPGA, 2, 94</td>
</tr>
<tr>
<td>bandwidth, 113</td>
</tr>
<tr>
<td>challenges, 8</td>
</tr>
<tr>
<td>data path, 289</td>
</tr>
<tr>
<td>DSP block, 106</td>
</tr>
<tr>
<td>evolution, 3</td>
</tr>
<tr>
<td>mapping, 118, 154, 155</td>
</tr>
<tr>
<td>market, 98</td>
</tr>
<tr>
<td>memory, 287</td>
</tr>
<tr>
<td>processors, 286</td>
</tr>
<tr>
<td>programmability, 5</td>
</tr>
<tr>
<td>technologies, 3</td>
</tr>
<tr>
<td>tools, 98</td>
</tr>
<tr>
<td>Virtex-II Pro, 214</td>
</tr>
<tr>
<td>FPGA acceleration, 281</td>
</tr>
<tr>
<td>FPGA implementation</td>
</tr>
<tr>
<td>k-means clustering, 283</td>
</tr>
<tr>
<td>Black–Scholes, 282</td>
</tr>
<tr>
<td>Heston, 282</td>
</tr>
<tr>
<td>FSM, 125</td>
</tr>
<tr>
<td>FSME, 219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAUT, 148</td>
</tr>
<tr>
<td>Givens rotations</td>
</tr>
<tr>
<td>square root free, 36</td>
</tr>
<tr>
<td>GPU, 86</td>
</tr>
<tr>
<td>architecture, 87</td>
</tr>
<tr>
<td>SMP, 87</td>
</tr>
<tr>
<td>Graphical processing unit, 86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAL, 82</td>
</tr>
<tr>
<td>Hardware abstraction layer, 82</td>
</tr>
<tr>
<td>Harvard, 82</td>
</tr>
<tr>
<td>Heston, 282</td>
</tr>
<tr>
<td>Heterogeneous computing, 4</td>
</tr>
<tr>
<td>High-level synthesis, 140</td>
</tr>
<tr>
<td>C-based, 143</td>
</tr>
<tr>
<td>CAL, 148</td>
</tr>
<tr>
<td>Catapult, 147</td>
</tr>
<tr>
<td>GAUT, 148</td>
</tr>
<tr>
<td>Impulse-C, 147</td>
</tr>
<tr>
<td>LegUp, 150</td>
</tr>
<tr>
<td>SDK for OpenCL, 145</td>
</tr>
<tr>
<td>Vivado, 143</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM, 281</td>
</tr>
<tr>
<td>iCE40isp, 109</td>
</tr>
<tr>
<td>IIR filter</td>
</tr>
<tr>
<td>pipelining, 166</td>
</tr>
<tr>
<td>IIR filters, 24</td>
</tr>
<tr>
<td>low-pass, 22</td>
</tr>
<tr>
<td>Impulse-C, 147</td>
</tr>
<tr>
<td>Inductive learning, 276</td>
</tr>
<tr>
<td>Intel, 72</td>
</tr>
<tr>
<td>Interference canceling, 226</td>
</tr>
</tbody>
</table>
Index

Interleaved processing, 209
Interleaving, 156
IP cores, 9
IP design process, 227
ITRS roadmap, 71

k
k-means clustering
 averaging, 292
 comparison, 292
 distance, 291
 FPGA, 282
 optimizations, 292
k-slowing, 212
Karnaugh map, 95

l
Latency, 154
Lattice filter, 169, 214
LegUp, 150
LMS filter, 31
Locality, 311
Logarithmic number systems, 56
Longest path matrix algorithm, 167
Lookup table, 98, 218
Low power
 FFT, 311
LUT, 98, 117
 encoding, 124
 reduction, 123

m
Manhattan distance, 285
Memory, 121
Mentor Graphics, 147
Microsoft, 281
 Catapult, 281
Mindspeed, 94
 T33xx, 94
Minimum absolute difference, 219
Model of computation, 200
Monolithic Memories, 95
Moore's law, 1
Motion estimation, 122, 219
Multiplier, 102, 106, 308
 Booth's encoding, 54
 carry-save, 53
 Mult18, 216
 Wallace, 54

n
Normalized lattice filter, 214
Number representations, 42
 binary coded decimal, 44
 one's complement, 43
 signed digit number representation, 55
 signed magnitude, 43
 two's complement, 44
Nvidia GeForce GPU, 87
Nyquist rate, 153

o
OpenCL, 87
OpenCL Details, 146
Operations
 division, 63
 square root, 60, 64
OR matrix, 95

p
PAL, 96
Parallelism, 75
Parallella, 80
Pipelining, 156, 160, 306
Pipelining period, 167
PLA, 96
PLD, 96
PLL, 103
Port, 202
Power consumption, 4, 296
 Altera, 301
 dynamic, 297
 FPGA, 300
 static, 299
 switching activity, 298
Xilinx, 301
Printed circuit boards, 1
Process networks, 201
 dataflow process networks, 201
Kahn process networks, 201
Processor, 77
 branches, 289
 flags, 289
 instruction set, 289
Processors, 286
Program bus, 82
Programmability, 6, 72
Programmable
array logic, 96
logic array, 96
logic devices, 96

q
QR array, 233
linear, 256
rectangular, 262
retiming, 250
sparse linear, 258
sparse rectangular, 264
QR cell
boundary cell, 248
internal cell, 248
QR-RLS decomposition, 231
Quine–McCluskey, 95

r
Radar, 226
RAM, 121
Rate, 202
RCM
design procedure, 134
Read-only memory, 96
Reconfigurable computing, 7
Reduced coefficient multiplier, 133
Regression, 278
Residue number systems, 57
Retiming, 160, 250
algorithm, 161
cut-set theorem, 163
delay scaling, 163
delay transfer, 163
RLS algorithm
Givens, 36
RLS filter, 32
RLS filters, 231
ROM, 96
implementation, 123

s
Sampling rate, 153
Sampling theory, 14
Scaling, 71
out, 280
up, 280
Scheduling
deadlock, 202
folding, 174
repetitions vector, 203
self-loop, 221
unfolding, 173
SDK for OpenCL, 145
Search engine, 280
Search window, 122, 219
SFG, 158, 200, 233
Shift register, 118, 218
Signal flow graph, 200
Signed digit number representations, 55
SMP, 87
Social media intelligence, 275
Switched capacitance, 303, 305
Synthesis tools
GAUT, 149
Systolic array, 36
triangular, 91
array, 90
linear, 89

Technology, 70
scaling, 71
Throughput rate, 153
Token, 201
Topology matrix, 202
Transforms
DFT, 16
DWT, 19
Triple-oxide transistor, 301

Unfolding, 173

Vivado, 143
Von Neumann, 77

Wave digital filter, 25
two-port adaptor, 27
Index

Wavelet transform, 19	Ultrascale, 103, 104
White box component, 210	Virtex-7, 103
Wiener–Hopf normal equations, 34	Virtex-II Pro, 214
Wordlength, 65	Zynq, 107, 108

X

| Xilinx |
| block RAM, 105 |
| CLB, 104 |
| DSP48E2, 106 |
| memory, 105 |

Z

| Zynq, 107 |
| APU, 108 |
| ARM, 107 |
| programmable logic, 107 |
| programmable system, 107 |