Index

Page references to Figures or Tables will be in **bold**, while references to Notes will be followed by the letter ‘n’ and Note number.

- acculturation, 417
- Achenbach System of Empirically Based Assessment (ASEBA), 15
- active and evocative rGE, 31, 32
- ADHD see attention deficit hyperactivity disorder (ADHD); Attention Deficit Hyperactivity Disorder (HDHD)
- adolescents
 - adolescent-onset conduct disorder, 487–488
 - behavior of, 246–248, 375–376
 - criminal legal policy for, 500–501
 - decision-making deficits, 505–510
 - emotion regulation, 373–376
 - emotion socialization, 374–375
 - emotional climate, 375
 - measures of behavior, 17–18
 - miLife study of biology and environmental interactions in daily lives of, 54–55
 - mobile technologies, using to advance study of psychopathology, 45–60
 - modeling hypothesis, 375
 - novelty seeking in, 243
 - parent–child relationship, 373–374
 - phones, attitude to, 52–53
 - and role of parenting, 318
 - social network analysis, 50, 51
- adoption-at-birth, quasi-experimental designs, 34
- adulthood, emerging (ages 18–25 years), 376–378
- emotion socialization, 377
- emotional climate, 377
- linking emotion regulation to behavior, 377–378
- adverse circumstances
 - Concordia Longitudinal Risk Project, Canada, 352–355
 - developmental changes in emotional and behavior problems over time, 354–355
 - early-life events, gender-specific, 336–337, 339
 - intergenerational transmission of psychopathology, 350–352, 355
 - overview, 346
 - parenting, stress response and psychopathology, 353–354
 - poverty and disadvantage, growing up in, 348–350, 357, 358
 - as risk factor, 345–363
 - transactional processes between parents and children, 355
 - affective experience, 73–74
 - affective and cognitive trait empathy, 168, 170
 - affective state empathy, 167, 168–169
aggression
adverse circumstances, 346
developmental taxonomical theories, 15
and empathy issues, 162
in girls, 321, 322, 323
group-based trajectory models (GBTMs), 13
growth curve models (GCMs), 12
measures of behavior, 17–18
perception by peers of acceptable use, 316
reactive and proactive, 323–324
relational, 312–313, 317, 321–323, 328, 339, 489
social and relational, 321–323
and violence, 319–321, 322, 325
Ainsworth, M. D. S., 294
Akaike information criterion (AIC), 18
Aksan, N., 294
Alarcón, M., 280
Alderson-Day, B., 114
Alfano, C. A., 219, 220
ALSPAC see Avon Longitudinal Study of Parents and Children (ALSPAC)
Al-Taie, S., 126
Ambridge, B., 141
American Academy of Pediatrics, 396
amygdala, brain, 166, 171, 184, 185, 187, 336, 373
analysis of variance (ANOVA), 6
Anastassiou-Hadjicharalambous, X., 168, 169, 170
Anderson, K. E., 300–301
anorexia nervosa, and ASD, 458–462
anterior cingulate cortex (ACC), 166
antipathies, peer relationships, 316–317
antisocial behavior
see also behavior; conduct disorder (CD);
disruptive behavior disorders (DBD),
empathy problems in youth with conduct disorder (CD), 165
and empathy issues, 162
mobile technology research, 50
parental history, 337
peer processes, 312, 313, 314, 317, 318, 319
trajectories/trajectory-modeling techniques, 14, 16, 18, 19, 20, 21, 22
anxiety disorders 188, 447
see also obsessive compulsive disorder (OCD)
Diagnostic and Statistical Manual of Mental Disorders (DSM), 447
fight-flight reaction, 399
intergenerational transmission of psychopathology, 350
as part of an “internalizing” symptom list, 215
risk factors, 298
and sleep disturbances, 218–220
cognitive processes, 223
environmental influences, 222–223
genetic factors, 221–222
longitudinal studies, 220–221
mechanisms underpinning associations, 221–223
anxious–coercive cycle, 298
aphasia, 141
Archibald, L. M., 147
Armstrong, T., 77
Arnheim, R., 79
art therapies, 64
arts, the
“4E” view of cognition, 70, 71, 80
aesthetic experience, 73–74
Beckettian qualities, in film, 79
“blind spots” in art and science, 65–66, 70
and developmental psychopathology, 61–86
applications, 74–76
arts as a vehicle for recovery, 64
madness and creativity, 68–71
participatory and relational approaches to arts and health, 66–71
writing, therapeutic nature of, 64
imagination, 65–66
“Imagining Autism” (UK research project), 67, 76–82, 82n10
and meaning-making, 66, 71
neuroscience, 67, 80–82
“outsider art” movement, 77
realization, 62, 64, 68
relationality, 62, 66–71
reparative function, 62, 64, 71
representational function, 62, 63, 64, 67, 71
spectator, role in aesthetic experience, 66–67
theatre and performance, role in treatment of mental disorders, 63, 64, 65, 79
third space concept, 62, 63, 71
This Room, play (Dean), 61–65, 68, 69
arts-based trauma therapies, 70
ASDs see autism spectrum disorder (ASD)
Asperger, H., 77
Asperger Syndrome Diagnostic Interview, 459
Asperger’s disorder, 443
see also autism; autism spectrum disorder (ASD)
attachment
emotional climate, 369
genome-wide association studies (GWAS), 250–252
infant attachment disorganization, 248–249
longitudinal studies, 249–250
attention, and neurocognition, 200–201
attention deficit hyperactivity disorder (ADHD), 480–484
and ASD, 111–112, 457
classification across the lifespan, 482–483
comorbidity, 274
defining, 30
Diagnostic and Statistical Manual of Mental Disorders (DSM), changes in, 443, 444
eyrly onset, 30
etiology, 30
Inhibition impairments, 110
key issues, 483–484
and learning difficulties, 265
PalmPartners study of family processes/ contextual triggers, 53, 54
parent–child dyads, 53
performance-based (PB) tasks, 100–103, 110–111
prevalence, 30
real-world (RW) measures, 98–99, 110
secular trend, 30
and smoking during pregnancy, 30, 35–36
subtypes, 481–482
vs. Tourette’s syndrome, 112–113
twin research, 265
vs. typically developing controls, 110–111
Working Memory impairments, 110
attenuated psychosis syndrome, 445
authenticity, in theatre, 64
autism
see also autism language-impaired (ALI); autism language-normal (ALN); autism spectrum disorder (ASD); autistic traits, in non-autistic psychopathology development; “Imagining Autism” (UK research project)
classic, 77
complex and multifaceted nature of, 77
defining, 77
as disorder of the imagination, 65
high-functioning, 77
imagination in, 77, 78
neuropsychology of, 65
potential for originality in people with, 76–77
“triad of impairments” in, 77
Autism Diagnostic Observation Schedule (ADOS), 78
autism language-impaired (ALI), 276, 282n1
cognitive underpinnings of language impairment in, 277–279
autism language-normal (ALN), 276, 282n1
autism spectrum disorder (ASD)
see also autism; autism language-impaired (ALI); autism language-normal (ALN); autistic traits, in non-autistic psychopathology development
and ADHD, 111–112, 457
and anorexia nervosa, 458–462
broader autism phenotype (BAP), 457, 458
and conduct problems, 462–465
core diagnostic features, 280
developmental cognitive neuroscience, 184–187
diagnosis in young children, 184
Diagnostic and Statistical Manual of Mental Disorders (DSM), changes in, 443
as evolving construct, 456–458
face processing, abnormal, 185
heritability, 266, 280
imitation tasks, difficulty with, 186, 190
intellectual functioning, 108
and language disorder, 276–279
autism language-impaired (ALI), 276, 277–279
behavioral similarities, 276–277
cognitive underpinnings of language impairment in SLI and ALI, 277–279
specific language impairment, 276
and learning difficulties, 265
mobile technology assessment/ interventions, 48
performance-based (PB) tasks, 95–97, 108–109
real-world (RW) measures, 94, 104, 106–107, 108
autism spectrum disorder (ASD) (cont'd)
Shift and Emotional Control impairments in, 108
terminology, 456
vs. Tourette’s syndrome, 112–113, 114
vs. typically developing controls, 76, 104, 106–107, 108–109
autistic traits, in non-autistic psychopathology development, 455–473
see also autism language-impaired (ALI); autism spectrum disorder (ASD)
investigation of traits, as risk-factor for development of non-autistic psychopathology, 465–473
subclinical traits, 274, 464
subgroups, 462, 467
terminology, 456
Avon Longitudinal Study of Parents and Children (ALSPAC), 198, 202
Baddeley, A. D., 145, 147
Baker, Bobby (UK artist), 71–74
Bakermans-Kranenburg, M. J., 249
Bakhtin, M., 74, 75–76, 81
Ban, L., 423
Barke, E. S., 206
Barley, R. A., 301
Barnard, P., 65–66, 78–79, 82n4
Barry, J. G., 280
Barry, R. A., 380
basal ganglia dysfunction, in TS, 112
Bateson, G., 75
Battersea Arts Centre, UK, 63, 82n1
Bauer, D. J., 9
Belsky, J., 252
Bennett, A., 435
Berliner, T., 79
Bialystok, E., 154
bias
attention biases in children, 187–189
missing data, 22
bidirectional case-cross studies, 33
bilingualism, 154
bipolar/related disorders, 445–446
Bishop, D. V. M., 144, 145, 154, 280, 281–282
Blachman, D., 312
Blair, C., 300
Blair, P. S., 217
Blair, R., 71, 82n8
Blair, R. J. R., 165–166
Bleuler, E., 77
body image, 314
Boivin, M., 323
Bonanno, G. A., 400
Booher, J. A., 373
Boonstra, A. M., 111
Borden, L. A., 293
borderline personality disorder, 71
Borduin, C. M., 318
Boucher, N., 146, 148
Bourriaud, N., 66–67
Boxer, P., 400
brain, 18
linking genes to, 279–282
linking of disaster exposure to emotional and behavior problems, 394–401
linking to emotion regulation in adolescents, 375–376
in early childhood, 377–378
in middle childhood, 372–373
in young adults, 377–378
measures of, 17–18
multiple causes, 275
and temperament in infancy, 246–248
Behavior Rating Inventory of Executive Function (BRIEF), 91–92, 110, 111, 112, 127
Behavioral Regulation Index (BRI), 104, 106
Global Executive Composite (GEC), 104
Metacognition Index (MI), 104, 106, 108
Behavioral Assessment of Dysexecutive Syndrome (BADS), 92, 128
Behavioral Regulation Index (BRI), BRIEF, 104, 106
Belsky, J., 252
Bennett, A., 435
Berliner, T., 79
Bialystok, E., 154
bias
attention biases in children, 187–189
missing data, 22
bidirectional case-cross studies, 33
bilingualism, 154
bipolar/related disorders, 445–446
Bishop, D. V. M., 144, 145, 154, 280, 281–282
Blachman, D., 312
Blair, C., 300
Blair, P. S., 217
Blair, R., 71, 82n8
Blair, R. J. R., 165–166
Bleuler, E., 77
body image, 314
Boivin, M., 323
Bonanno, G. A., 400
Booher, J. A., 373
Boonstra, A. M., 111
Borden, L. A., 293
borderline personality disorder, 71
Borduin, C. M., 318
Boucher, N., 146, 148
Bourriaud, N., 66–67
Boxer, P., 400
brain, 18
see also developmental cognitive neuroscience
abnormalities, 30, 186, 190, 209, 480
activation, 150, 186, 191, 192
adult, 141, 150
alterations in activity, 191–192
amygdala, 166, 171, 184, 185, 187, 336, 373
areas/regions, 336, 505, 506
developmental cognitive neuroscience, 182, 184, 185, 187
disruptive behavior disorders (DBD), 163, 166, 169, 171
emotion regulation, 376, 378
neurocognitive markers, early, 206, 208
specific language impairment (SLI), 141, 145
arts, the, 185, 187, 373
and the arts/performance, 71, 75
basic threat circuit, 166
development, 144, 149, 181, 208, 236, 244, 378, 451, 512n1
developmental cognitive neuroscience, 181–186, 189, 190
in disruptive behavior disorders, 163, 164, 166, 167
electrical activity, 182, 183
event-related potentials (ERPs), 164, 183, 189, 218
face processing in, 184–185
fetal, 144
hippocampus, 336
imaging studies, 151, 163, 166, 169, 182–184, 186, 187, 451
infant/child, 154, 183, 187
injury to, 445
limbic structures, 163, 373
maturation, 217, 218, 373, 376, 378
measures of activity, 190, 192, 216
mirror neurons, 163, 186
neurotransmitters, 188, 189
plasticity, 181, 250
prefrontal cortex, 188, 209, 236, 376, 378, 505, 506
processes, 181, 190, 191
responses, 181, 190, 191
resting activity, hemispheric asymmetry, 182
social brain network, 185, 186
specific language impairment (SLI), 140, 141, 143, 145, 149, 150, 151
structures, 163, 184, 185, 187, 189, 197, 373
subcortical structures, 185, 187, 373
brain stem, 183
brain-derived neurotrophic factor (BDNF), 399
BRIEF see Behavior Rating Inventory of Executive Function (BRIEF)
Brief Symptom Inventory, 245
broader autism phenotype (BAP), 457, 458
Broca’s aphasia, 141
Bronfenbrenner, U., 394
Brotman, L. M., 300
BSD Domain Containing 1 (BSDC1) gene, 250
Bucharest Early Intervention Project (BEIP), 199, 202
Buckholdt, K. E., 375, 376, 377
Burack, J. A., 418
Burraston, B., 293
Butler, G., 70
callous-unemotional (CU) traits, 488–489
and ASD, 463
and empathy issues, 161, 162, 165, 171
parenting influences, 301, 302
violence and aggression, 320–321, 322, 325
Cambridge Science Festival, UK, 63, 82n1
Canada
Concordia Longitudinal Risk Project see Concordia Longitudinal Risk Project, Canada
Cree communities, 413–414
education system, 415, 421
independence, valuing of, 418
suicide rates in First Nations communities in British Columbia, 419, 420
candidate gene association design, 236
CANTAB (Cambridge automated neurophysiological testing battery), 114
caricature, 72
Cassidy, A. R., 508
catatonia, 445
catechol-O-methyltransferase gene (COMT) associations between common genetic variants and temperament/behavior, 246
associations between common genetic variants and visual attention, 241
fearfulness, anxiety and attention biases, in children, 188, 189
G/A genotype, 246–247
and infant attention, 242
longitudinal studies of infant temperament and childhood/adolescent behavior, 246
CBT see cognitive behavioral therapy (CBT)
CD see conduct disorder (CD)
CFI (comparative fit index), 19
Chandler, M. J., 419, 420
Chase, R. M., 219
Chellingsworth, M., 69
Cheng, Y., 169, 170
Chiat, S., 147
Child Behavior Checklist (CBCL), 216, 508
Child Behavior Report of Sleep Patterns, 216
childhood externalizing disorders, 475–495
attention deficit hyperactivity disorder (ADHD) see attention deficit hyperactivity disorder (ADHD)
conduct disorder (CD) see conduct disorder (CD)
diagnostic criteria for, in DSM, 477–479
oppositional defiant disorder (ODD) see oppositional defiant disorder (ODD)
children
see also adolescents; infants
abuse of, 70
behavior and temperament in infancy, 246–248
childhood-onset conduct disorder, 487–488
mobile technologies, using to advance study of psychopathology, 45–60
peer relationships see peer processes
phones, attitude to, 52–53
temperamental fearfulness, anxiety and attention biases in, 187–189
Children’s Sleep Habit Questionnaire (CSHQ), 216–217
Cholinergic receptor nicotinic alpha 4 (CHRNA4), 242, 243, 246
Choudhury, R. R., 50
CHRNA4 see Cholinergic receptor nicotinic alpha 4 (CHRNA4)
chromosomes, 279–280
Cicchetti, D., 372, 412
Cillessen, A. H. N., 315
Clark, A., 71
CNTNAP2 gene see contactin-associated protein-like 2 (CNTNAP2) gene
codes, interacting information, 66
correlation theory, 296, 297–298
Coghill, D., 206
cognition
see also cognitive behavioral therapy (CBT); cognitive state empathy; cognitive turn; neurocognition
“4E” view of, 70, 71, 80
“ordinary,” 77
social, 201–202
cognitive behavioral therapy (CBT), 56, 62, 404
online-based, 224
cognitive control center, brain, 505
cognitive state empathy, 167–170
cognitive turn, 70
Cohen, D., 167
Cohen Cruz, J., 74
coherence measures, EEG, 182
Comer, J. S., 396, 396–397
communication, and language, 203–204
comorbidity, 273–285
ASD and language disorders, 276–279
conduct disorder (CD), 161–162, 300, 320
in developmental psychopathology, 274–276
disruptive behavior disorders (DBD), 161–162
etiology, 264–266
genetics and endophenotypes, 279–282
specific language impairment (SLI), 152–153
comparative fit index (CFI), 19
computational modeling evidence, 281
COMT gene see catechol-O-methyltransferase gene (COMT)
Concordia Longitudinal Risk Project, Canada, 346, 357
see also adverse circumstances; parenting influences
intergenerational transmission of psychopathology, 351, 351–352
multiple-levels-of-analysis approach, 353
parent-related risk factors and child outcomes, 347–348
poverty and disadvantage, growing up in, 249
psychiatric disorders in parents, 350
psychopathology in at-risk children, 352–355
results, 356
transactional processes between parents and children, 355
conduct disorder (CD), 161, 486–490
see also disruptive behavior disorders (DBD); oppositional defiant disorder (ODD)
adolescent-onset, 487–488
behavioral measures, 17
behaviors, 165
in boys, 300–301
callous-unemotional traits, 488–489
childhood-onset, 165, 487–488
comorbidity, 161–162, 300, 320
diagnostic criteria for, 165
empathy problems in, 161
gender-specific factors, 300–301, 321
key issues, 490
multiple pathways to, 165
subgroups, 486, 487, 488, 490
violence and aggression, 319
confounding, genetic, 31, 32, 34
Connell, J. P., 369–370
Conner, A., 414
Constantino, J. N., 457
contactin-associated protein-like 2 (CNTNAP2) gene, 279, 280, 281
contemporary performance practice, 65
Conti-Ramsden, G., 147
convenience samples, 36
Cook, A., 70–71
Coombs, E., 461
copy number variants (CNVs), 263
cortisol, 353, 399, 402
coum-rumination, 313
cousin-comparisons, 33–34, 35
Crago, M. B., 142, 143–144
creative vs. recreative imaginations, 65
Creswell, C., 403
Crick, N. R., 317
cross-cultural research, 412
cross-fostering studies, 34
cross-sectional studies, 5, 464
Csibra, G., 191
cubic trajectories, 12
Cui, L., 374, 376
cultural affiliation, 412
cultural perspectives, 411–430
acculturation, 417
cultural identification, 417
cycle of culture, disruption of, 414–416
definition of culture, 413–414
cultural enculturation, 417
intervention, 424–425
Inuit communities, 415, 420
majority culture, 418
mental health problems, 423–424
North America, study of Indigenous youth of, 412–413, 419–423
risk and wellbeing, 417–418
culture
cycle of, disruption of, 414–416
defining, 413–414
Cunningham, J., 374
Curran, P. J., 9
Currie, G., 65, 80
Dadds, M. R., 298
data
‘Big Data,’ ability of small phones to gather, 49–51
missing, 21–22
sources, 19–20
Davis, M. H., 162, 168
Dawson, G., 184, 185, 186, 191
DBD see disruptive behavior disorders (DBD)
de Haan, M., 188
De Wied, M., 167, 168
Dean, L. J., 61–65, 68, 69, 82n1
Decety, J., 167, 186
decision-making deficits, adolescents, 505–510
deficits among youths with psychopathology, 506–507
executive functioning, 505–510
and externalizing disorders, 507
deconstructionism, 81
DeFries-Fulker extremes analysis, 262
deLahunta, S., 66
Denham, S. A., 369
depressive disorders, 446–447
major depressive disorder, 219
maternal, 368, 504
mobile technology support, 47–48
peer processes, 313
trajectories/trajectory-modeling techniques, 10, 20
Derrida, J., 81
Detweiler-Bedell, B., 77
developmental cognitive neuroscience, 181–196
advantages and limitations with respect to developmental psychopathology, 189–192
autism spectrum disorder (ASD), 184–187
definitions and uses, 181
infants/newborns, 181, 182, 185, 186, 187, 189
methods, 182–184
temperamental fearfulness, anxiety and attention biases in children, 187–189
developmental disorders
combination of approaches for
neuroconstructivism, 141, 149–150
new proposals, 150–153
parallel combination theory, 151–153
double dissociations within, 142–143
developmental periods, 20–21
developmental psychopathology
adverse circumstances, 350
and the arts see arts and developmental psychopathology
comorbidity see comorbidity
defining, 259, 455
developmental cognitive neuroscience,
advantages and limitations with respect to, 189–192
and generalist genes, 259–271
key ideas, 456
life cycle of psychopathology, 354
and policy making see social and legal policy
quasi-experimental research designs,
implications for, 36–37
rarity of “pure” forms, 274
developmental taxonomy (Moffitt)
developmental periods, 20
dimensional alternative to, 14–15
example, 14
measures of behavior, 17–18
developmental trajectories see trajectories/trajectory-modeling techniques
Diagnostic and Statistical Manual of Mental Disorders (DSM), 215, 435–454, 440–441, 467
anxiety disorders, 447
attention deficit hyperactivity disorder (ADHD), 443
attenuated psychosis syndrome, 445
autism spectrum disorder (ASD), 443
bipolar/related disorders, 445–446
catatonia, 445
childhood externalizing disorders,
diagnostic criteria for, 477–479
conduct disorder (CD), 161, 165
depressive disorders, 446–447
DSM-I, 436
DSM-II, 486
DSM-III, 481, 486, 488
DSM-IV, 435, 436, 438, 439, 443, 481
DSM-V, 436, 437–441, 442, 450–453, 476, 480, 483
eating disorders, 449
externalizing disorders, 475, 476
gender dysphoria, 449
impulse control/conduct disorders,
449–450
intellectual disability, 443
new and merged disorders in DSM-5, 436, 440–441, 442
research implications, 450–453
non-axial documentation of diagnosis, 436
NOS (“not otherwise specified”) conditions, 440
obsessive compulsive disorder (OCD), 447–448
oppositional defiant disorder (ODD), 165
post-traumatic stress disorder (PTSD), 448
schizophrenia, 444–445
social (pragmatic) communication disorder, 443
somatization disorder, 448–449
structural and conceptual changes in DSM-5, 437–440
substance/alcohol dependence, 450
tic disorders, 444
violence and aggression, 320
dialogism, 74, 75, 81
Diary Drawings (Baker), 71, 72
diary studies, 46–47
self-reports, 49
diathesis–stress model, 54
Diego, M., 368
‘digital natives,’ 45
disasters and development of psychopathology see also ecological perspective
Hurricane Gustav, 397
Hurricane Katrina, 397, 398, 402
interpersonal exposure, 394
media coverage, 396
9/11 terrorist attacks, 402, 403
post-traumatic stress disorder (PTSD), 396, 397, 398, 400–401, 403, 448
Dishion, T. J., 293
disruptive behavior disorders (DBD),
empathy problems in youth with, 161–178
see also conduct disorder (CD); empathy; oppositional defiant disorder (ODD)
clinical implications, 172–173
discussion, 170–172
empathy problems in DBD subtypes, 165–166, 171
empirical evidence for empathy problems in youth, 166–167
studies with DBD subtypes, 168–170
heterogeneous nature of DBD, 165–170
psychopathic traits, 166
studies with undifferentiated groups of youth, 167–168
subtypes of DBD
empathy problems in, 165–166
empirical studies, 168–170
distress cues, responsiveness to, 166, 172
DNA variation, 263
domain-general research, specific language impairment
see also domain-specific research, specific language impairment; specific language impairment (SLI)
collective domain-general and domain-specific inefficiency interaction, 152–153
constructivist, input-based and functional classification, 141
counter-arguments from, 143–145
domain-specific research, counter-arguments from, 147–149
inefficient domain-general causes, in context of intact modular development, 151
inefficient modularization in context of intact domain-general skills, 152
phonological memory deficits as cause of SLI, 145–146
social and emotional difficulties in SLI, 146–147
strengths of, 154
wider cognitive difficulties as evidence of impairment, 146
domain-specific research, specific language impairment
areas in SLI championed by, 141–145
collective domain-specific and domain-general inefficiency interaction, 152–153
counter-arguments from, 147–149
defining domain-specific research, 140
domain-general perspective, counter-arguments from, 143–145
double dissociations within developmental disorders, 142–143
遗传性语言技能，142
高度具体子群/语言学困难在语言障碍，143
nativist-generativist classification, 140, 142–143
social and emotional difficulties, 147
strengths of, 153–154
dopamine, 188
dopamine receptor D2 (DRD2) gene, 241
dopamine receptor D4 (DRD4) gene, 235
7-repeat allele (DRD4-7R), 54
associations between common genetic variants and temperament/behavior, 244–245
associations between common genetic variants and visual attention, 241
attachment disorganization, 248
and infant attachment disorganization, 248–249
longitudinal studies of infant attention, 243
longitudinal studies of infant temperament and childhood/adolescent behavior, 246
risk factor for psychopathology, 199
dopamine transporter gene (DAT1), 241, 242, 246, 301
double dissociations within developmental disorders, 142–143
Douglas, L., 294
Down syndrome, 259, 423, 457
Downs, A., 167
dramatic monologue, 64
DRD4 see dopamine receptor D4 (DRD4)
D’Unger, A. V., 21
Dunsmore, J. C., 373
dynamic systems (DS) theory, 294
dyscalculia, 260
dyslexia, 260
dyspraxia, speech, 144
Early Adolescent Temperament Questionnaire (EAT-Q), 108, 110, 111–112
Early Infancy Temperament Questionnaire, 244
Early Left-Anterior Negative electrophysiological response, 145
Early Start Denver Model, 191
early-life events, gender-specific, 336–337, 339
eating disorders, 314, 449
anorexia nervosa, and ASD, 458–462
Ebstein, R. P, 245
ecological momentary assessment (EMA), 46–49, 51, 52, 53, 55, 56
see also mobile technology research
ecological perspective
see also ecological momentary assessment (EMA)
disasters and development of psychopathology, 393–409
ecological needs-based perspective, 394
linking of disaster exposure to emotional and behavior problems, 394–401
exosystem influences, 397
macrosystem influences, 396–397
mesosystem influences, 397
microsystem influences, 398
ontogenic influences, 399–401
ontogenic influences, disaster exposure, 399–401
Edinburgh Postnatal Depression Scale, 242
education
educational risk, in Indigenous youth, 421–423
higher education as buffer against adverse circumstances, 350
residential school systems, US and Canada, 416
schooling effects, gender-specific, 338–339
in United States and Canada, 416, 421
Edwards, J., 318
effortful control (EC), 126
Effortful Control Scale (ECS), 108, 111
Eggleston, E. P, 21
Eggleston, E. P., 20
Eisenberg, N., 166, 371, 379
electrocardiography (ECG), 216
electroencephalography (EEG), 182, 183, 184, 189–190, 197, 216
electromyography, 216
electrooculography, 216
Elizar, Y., 300
Elabbaghi, M., 200–201, 206, 207, 208, 209
EMA see ecological momentary assessment (EMA)
Embedded Figure Task, 461
emotion coaching, 366
emotion regulation, 365–389
infancy and early childhood (birth to 4 years), 370, 378–379
middle childhood (5 to 9), 372–373
adolescence, 375–376
young adulthood (18 to 25), 377–378
cognitive strategies, 367
defining, 365
linking to behavior, 370, 372–373
longitudinal studies, 379–380
observation/modeling pathway, 366
parent–child relationship, emotional foundation, 366
parenting practices, 366
social referencing, 368–369
emotion socialization
infancy and early childhood (birth to 4 years), 369
middle childhood (5 to 9), 371
adolescence, 374–375
disruptive behavior disorders, 377
emotional climate
infancy and early childhood (birth to 4 years), 369–370
middle childhood (5 to 9), 371–372
adolescence, 375
young adulthood (18 to 25), 377
emotional expression, 368
emotional flooding, 295
empathy
see also conduct disorder (CD); disruptive behavior disorders (DBD); oppositional defiant disorder (ODD)
affective and cognitive components, 168, 170
affective components, 163, 165–166, 167, 168–169
arts and mental illness, 73
cognitive components, 163, 167–168, 169–170
complexity of, 162
defining, 161
disruptive behavior disorders, problems in youth with, 161–178
distress cues, responsiveness to, 166, 172
empathy-related components, 162–163
indexes of, 164
measurement of, 164
motor empathy, 163, 167
multidimensional nature, 162
and personal distress, 162, 163
problems in DBD subtypes, 165–166, 171
state empathy, 162, 164
and sympathy, 162–163
Empathy Index for Children and Adolescents (IECA), 164
enculturation, 417
endophenotypes, and genetics, 197, 275, 279–282
enemies, 316–317
Index 529

entrainment, 291
entropy, 19
environmental influences
and gender, 335–342
mobile technology research, 54–55
risk factors, 29–44, 199
sleep disturbances, 222–223
environmental stress, as risk factor for psychopathology, 199
epidemiological samples, 36
equifinality, 456
EQUIP program, 173
The Eradication of Schizophrenia in Western Lapland (Hayes and Woods), 74–75, 82
Estep, K. M., 369
Evans, B., 77
event‐related potentials (ERPs), 164, 183, 189, 218
executive dysfunction
see also Executive Function Deficit Metric (EFDM); executive functions (EF)
associated conditions, 93
developmental differences in, 127
visual‐domain‐specific deficits, in ASD, 109
Executive Function Deficit Metric (EFDM), 93, 104, 108, 109
executive functions (EF), 91–137
see also executive dysfunction
attention deficit hyperactivity disorder (ADHD)
performance‐based (PB) tasks, 100–103, 110–111
real‐world (RW) measures, 98–99, 110
vs. TS, 112–113
vs. typically developing controls, 110–111
autism spectrum disorder (ASD)
vs. ADHD, 111–112
performance‐based (PB) tasks, 95–97, 108–109
real‐world (RW) measures, 94, 104, 106–107, 108
vs. TS, 112–113
vs. typically developing controls, 104, 106–107, 108–109
Behavior Rating Inventory of Executive Function see Behavior Rating Inventory of Executive Function (BRIEF)
Behavioral Assessment of Dysexecutive Syndrome (BADS), 92, 128
combination of real‐world and performance‐task approaches to dysfunctions, 92
decision‐making deficits, adolescents, 505–510
definitions, 91
development of, 505–506
and externalizing disorders, 507, 508–509
future research directions, 128
interchangeability of real‐world and performance‐based assessment, 126–127
outline of research methods, 92–93
attention deficit hyperactivity disorder (ADHD), 98–103
autism spectrum disorder (ASD), 94–97
Tourette’s syndrome (TS), 104, 105
performance‐based (PB) tasks
among individuals with ADHD, 100–103
among individuals with ASD, 95–97, 108–109
among individuals with TS, 105, 113
compared to real‐world approach, 92
interchangeability of performance‐based and real‐world assessment, 126–127
purpose of PB tasks, 91
vs. real‐world measures, 114
sampling of measures, 115–125, 126
real‐world (RW) measures
among individuals with ADHD, 98–99
among individuals with ASD, 94, 104, 106–107, 108
among individuals with TS, 104, 112–113
assessment tools, 91–92
compared to performance‐task approach, 92
interchangeability of real‐world and performance‐based assessment, 126–127
vs. performance‐based measures, 114
purpose of approach, 91
results/discussion, 104
attention deficit hyperactivity disorder (ADHD), 110–112
autism spectrum disorder (ASD), 104, 106–107, 108
Tourette’s syndrome (TS), 112–113
study weights, calculation, 93
Tourette’s syndrome (TS)
performance‐based (PB) tasks, 105
real‐world (RW) measures, 104
vs. typically developing controls, ASD and ADHD, 112–113
exosystem influences, disaster exposure, 397
experience sampling methodologies, 46
Exposure and Response Prevention (ERP), 69
extended mind, 71
external validity, 32
externalizing disorders, 507
adversity, early, 335–336, 337
attention deficit hyperactivity disorder (ADHD) see attention deficit hyperactivity disorder (ADHD) in childhood, 475–495
conduct disorder (CD) see conduct disorder (CD)
developmental taxonomical theories, 14–15
diagnostic criteria for, in DSM, 477–479
diagnostic criteria for, in DSM, 484–485, 488, 489
ecological perspective, 401
executive functioning impairment in youth with, 508–509
meaning for social policy, 509–510
growth curve models (GCMs), using, 11–12
measurement, 15
oppositional defiant disorder (ODD) see oppositional defiant disorder (ODD)
parenting influences, 301
positive or negative parenting, 335–336
risk factors, 209
eye tracking, 197
facial electromyographic (EMG) procedures, 164
facial mimicry, 164
facial processing, 184–185, 368
Fagan Test of Infant Intelligence, 203
family context
see also parenting influences; quasi-experimental research designs, family-based; siblings, research on
age of child
infancy and early childhood (birth to 4 years), 367–370
middle childhood (5 to 9), 370–373
adolescence (10 to 17 years), 373–376
young adulthood (18 to 25), 376–378
emotion regulation and behavior, 370, 372–373, 375–378
emotion socialization, 369, 371, 374–375, 377
emotional climate, 369–372, 375, 377
future research directions, 378–380
infants at familial risk, 198–199
as leading cause of psychopathology in children and adolescence, 365, 366
modeling, 375
modeling hypothesis, 367–369
negative emotionality, 368, 373
PalmPartners study of family processes/ contextual triggers, 53–54
subsystems, family, 366–367
Feinberg, M. E., 336
fetal brain development, and maternal smoking, 30
Field, T., 368
fight-flight reaction, 399
Filippi, R., 145, 149
Film and Art (Arnheim), 79
Finlay, L., 69
Fischer, J. L., 378
Fite, P. J., 323
5-HTTLPR see serotonin-transporter-linked polymorphic region (5-HTTLPR) gene
fixed effect, 8
Flouri, E. E., 376
Fodorian modules, 140
Fontaine, N., 12
Fontencau, E., 145
Forbes, E. E, 220
Fosco, G. M., 375, 378
FOXp2 gene, 142, 144
Franklin, B., 411
free play, 77
Freeze-Frame task, 241
Frick, P. J., 165, 484–485, 488, 489
Friedmann, N., 143, 144
friends and friendlessness, 311–312
Froggett, L., 62, 67–68, 71
frontostriatal dysfunction, in TS, 112
Fryberg, S. A., 421, 422
functional magnetic resonance imaging (fMRI), 169, 183, 184, 185, 187, 190
functional near-infrared imaging (fNIRS), 183, 184
fusiform gyrus, 185
GAD see Generalized Anxiety Disorder (GAD)
Gaensbauer, T. J., 369–370
Garner, P. W., 369
Gathercole, S. E., 145, 147
Gau, S. S. F., 110

GBTMs see group-based trajectory models (GBTMs)

GCMs see growth curve models (GCMs)

gender dysphoria, 449

gender-specific factors, 335–342

aggression, 313, 321, 322, 323

body dissatisfaction, 314

conduct disorder (CD), 300–301, 321

depressive disorders, 313–314

eyearly‐life events, 336–337, 339

enemies, 316–317

exposure to substances and parental crime, 337–338

female gender dysphoria, 448

female gender dysphoria, 449

gender dysphoria, 449

gender‐specific factors, 335–342

aggression, 313, 321, 322, 323

body dissatisfaction, 314

conduct disorder (CD), 300–301, 321

depressive disorders, 313–314

eyearly‐life events, 336–337, 339

enemies, 316–317

exposure to substances and parental crime, 337–338

gender vs. environmental influences, 336

group‐based trajectory models (GBTMs), 12–13

growth curve models (GCMs), 12

parenting variables, 335–336

randomized preventive interventions, using trajectory modeling to test, 16

and role of parenting, 318

schooling effects, 338–339

gene identification, in infancy, 235–258

see also genetic factors; infants

associated with psychological traits, 235–258

associations between common genetic variants and temperament/behavior, 244–248

associations between common genetic variants and visual attention, 237, 241–244

attachment see attachment; infant attachment

candidate gene association design, 236

genome‐wide association studies (GWAS), 237, 250–252, 254

longitudinal studies of infant attachment, 249–250

longitudinal studies of infant attention, 243–244

longitudinal studies of infant temperament and childhood/adolescent behavior, 246–248

methodology detail, 237, 238–240

mixed evidence, interpreting, 252–253

next steps in genetic research, 252–253

other genetic approaches for identifying genes, 253–254

polygenic risk score analytic approach, 253 range of state, 251

research methods used, 236–237

sequencing, 253–254

gene–environment correlation (rGE), 31, 32, 34

generalized anxiety disorder (GAD), 215, 219, 220, 221

genetic factors

see also heritability

associations between common genetic variants and temperament/behavior, 244–248

associations between common genetic variants and visual attention, 237, 241–244

attention deficit hyperactivity disorder (ADHD), 30

in callous‐unemotional traits, 162

candidate gene association design, 236

catechol‐O‐methyltransferase gene (COMT), 241, 246

comorbidity, etiology, 264–266

confounding, in family studies, 31, 32, 34

dopamine receptor D2 (DRD2), 241

dopamine receptor D4 (DRD4), 241, 244–245

dopamine transporter gene (DAT1), 241, 242, 246, 301

and endophenotypes, 197, 275, 279–282

and gender, 336

generalist genes and developmental psychopathology, 259–271

genome‐wise association studies (GWAS), 237, 250–252, 254

infancy see gene identification, in infancy

learning disabilities, etiology, 260–263

linking genes to behavior, 279–282

molecular genetic research, 266, 273, 279

Monoamine‐oxidase‐A gene (MAOA), 245–246, 247

polymorphisms, as risk factor for psychopathology, 199

postnatal, 35–36

quantitative research, 31

quantitative trait locus (QTL) model, and DNA variation, 263

serotonin‐transporter‐linked polymorphic region (5‐HTTLPR) gene, 241, 244–245

sleep disturbances and anxiety, 221–222

specific language impairment (SLI), 142, 153

tryptophan hydroxylase 2 gene (TPH2), 241–242
Index

genome-wide association studies (GWAS), 237, 250–252, 254
geo-spatial information, 50
Gergely, G., 191
Gervai, J., 249
Geurts, H., 109, 114
G/G TPH2 genotype, 242
Gillberg, C., 459
Ginsburg, G. S., 219
girls, aggression in, 321, 322, 323
Global Executive Composite (GEC), BRIEF, 104
global positioning systems (GPS), 49–50
GMMs see growth mixture models (GMMs)
Gone, J. P., 413, 422–423, 424–425
Goodman, S. H., 503–504
Gopnik, M., 142, 143–144
Gotlib, I. H., 503–504
Gottman, J. M., 366
Graham, R. A., 400
Grammatical-SLI, 142, 143, 144, 145
Grandin, T., 77
Granger, D. A., 353
Gregory, A.M., 219, 220
Grossmann, T., 188
group heritability, 262
group-based trajectory models (GBTMs), 6–10, 22
data sources, 19
determination of number of trajectories best representing data, 18
developmental periods, 20
effectiveness of randomized preventive interventions, using to test, 15–16
gender-specific factors, 12–13
joint development of related yet different behaviors using, 12–14
key outputs, 8, 10
qualitative heterogeneity, 10
randomized preventive interventions, using to test, 16
sample size, 21
growth curve models (GCMs), 5, 7, 8–9, 22
adequacy of fit, establishing, 19
best-fit line, 8
developmental periods, 20
estimates, 8
externalizing and internalizing problems, study of, 11–12
key outputs, 8
linear growth curves, 11–12
nonlinear growth curves, 12
quantitative heterogeneity, 10
sample size, 21
shrinkage phenomenon, 8
slopes of aggression, 12
testing of predictors, moderators and mediators of treatment response, 16–17
growth mixture models (GMMs), 6, 7–8, 9, 11, 22–23
determination of number of trajectories best representing data, 18
developmental periods, 20
developmental taxonomical theories, 14
effectiveness of randomized preventive interventions, using to test, 15–16
key outputs, 8
Grych, J. H., 375
Guan, S., 217
Güroğlu, B., 317
Hale, L., 217
hallucinations, 77
Happé, F., 76–77, 79, 167–168
Harper, S., 416
Hawes, D., 298
Hayden, E. P., 301

Head Hand Head (Dean), 64, 82n1, 82n3
see also This Room, play (Dean)
Henggeler, S. W., 318
Henry, L. A., 148
Hensley, L., 402
heritability, 261, 262
see also genetic factors
autism spectrum disorder (ASD), 266, 280
dark or missing, 267, 273
Hernandez-Reif, M., 368
Hersh, M. A., 374
heterogeneity
disruptive behavior disorders (DBD), heterogeneous nature of, 165–170
parenting risk factors, 292
quantitative, 10
specific language impairment (SLI), 152
heteroglossia, 75–76
Hick, R., 146
hierarchical linear modeling (HLM), 5, 8, 9, 19
Hill, E. L., 109
Hinshaw, S., 312
hippocampus, 336
Hippocrates, 67
Histone Deacetylase 1 (HDAC1) gene, 250
Index
533

Hobfoll, S. E., 394
Holmboe, K., 241
Holmes, E., 63, 68, 70, 82n7
Holmes, E. A., 403
homophily, 313
Houston, J., 415
Hoven, C. W., 403
Hovik, K. T., 112
Huang, W. L., 110
Hubbard, J. A., 376
Hurricane Gustav, 397
Hurricane Katrina, 397, 402
Hussong, A. M., 374
hyperactivity
see also attention deficit hyperactivity disorder (ADHD)
group-based trajectory models (GBTMs), 12–13
hypothalamic–pituitary–adrenal (HPA) axis, 353, 354
‘i see smoking’ (smartphone app), 50
Imagery Rescripting, 70
imagination, 65–66
in autism, 77, 78
imaginative creativity, 65
“Imagining Autism” (UK research project), 67, 76–82, 82n10
imitation
behavioral, 191
difficulty with, in autism, 186, 190, 202, 208
facial expressions, 190, 197, 368
in infants, 368
voluntary, 191
implicational codes, 66
impulse control/conduct disorders, 449–450
in vitro fertilization, quasi-experimental designs, 34–35, 36
Infant Behavior Questionnaire, 188, 242, 247
infants
see also family context; gene identification, in infancy; parenting influences
aged from birth to 4 months, 244–245
aged 4 to 9 months, 245
aged 12 months, 245
attachment see attachment
attention, longitudinal studies, 243–244
developmental cognitive neuroscience, 181, 182, 185, 186, 187, 189
faces, responses to, 185, 186, 368
at familial risk, 198–199
premature, 198
temperament and childhood/adolescent behavior, 246–248
information codes, interacting, 66
Ingold, T., 80
Inhibition deficit, in Tourette’s syndrome, 113
Insel, T. R., 18
insula, 163
intellectual functioning
in ASD, 108
as buffer against adverse circumstances, 350
non-verbal skills, 146
in Tourette’s syndrome, 113
Interacting Cognitive Subsystems (ICS), 66
intergenerational studies, 345
intergenerational transmission of psychopathology, 350–352, 355
intermediate codes, 66
internal validity, 32, 34
International Classification of Sleep Disorders, 215
International Statistical Classification of Diseases and Related Health Problems (ICD), 435, 436, 467
Interpersonal Reactivity Index (IRI), 164, 168
intervention, cultural influences on, 424–425
Inuit communities, 415, 420
IVF see in vitro fertilization, quasi-experimental designs
Jack, B., 67
Jarrold, C., 126
Jaser, S. S, 375
Jennings, S., 64
Joanisse, M. F., 145
Jobe-Shields, L., 377
Johnson, E. O., 220
Johnson, M. H., 185, 206, 207, 209
Jones, A. P., 169–170
Jones, W., 70, 80
“just-in-time” intervention, 56
juvenile offenders, 337, 500
Kahn, R. E., 489
Kanner, L., 77
Karmiloff-Smith, A., 144, 145, 149
Kasari, C., 208
Keiley, M. K., 11
Kendall, P. C., 396, 396–397
Kenworthy, L., 93, 104, 109
Index

KIAA0319 gene, 266
Kim, H. S., 380
Kim-Spoon, J., 372
Kingery, J. N., 219
Kirmayer, L. J., 413, 420, 423
Klin, A., 70, 80
Kochanska, G., 201, 294, 298, 368, 380

La Greca, A. M., 395, 399, 403
Lacourse, E., 16
Lai, C. S. L., 144
Lakatos, K., 248
Lalonde, C., 419, 420
Lamey, A. V., 294
Landa, R. J., 208
Landry, O., 126

language

see also language impairment (LI)
acquisition of, 140–141, 367
and the arts, 70–71, 80
atypical and typical development, 141
and communication, 203–204
development of, and non-word repetition, 147
loss of, 141
modularity, “big” and “little,” 140, 143
and non-language cognitive systems, 140

language impairment (LI)

see also specific language impairment (SLI)
and ASD, 276–279
autism language-impaired (ALI), 276, 277–279
behavioral similarities, 276–277
cognitive underpinnings of language impairment in SLI and ALI, 277–279
diagnosis, 276–277
highly specific subgroups/linguistic difficulties in, 143
latent class growth models (LCGMs), 6
Laub, J. H., 20, 21

LCGMs see latent class growth models (LCGMs)
L-DRD4 genotype, 205, 235, 241, 243–245, 247–251

LDs see learning disabilities (LDs)
learning

disabilities see learning disabilities implicit, 146
and memory, 202–203
learning disabilities (LDs)

see also specific learning disabilities (SLDs)
comorbidity, 259

Diagnostic and Statistical Manual of Mental Disorders (DSM), changes
in, 443
etiology, 260–263
finding of genes, 266–267
generalist genes effects, mechanisms, 264
left inferior frontal gyrus, 141
Leonard, L. B., 147
Leppänen, J. M., 189, 242
Levinson, G., 71
Lewis, M. D., 294
lexical knowledge, top-down, 147
LI see language impairment (LI)
Li, F., 293
Lieven, E., 141
Liew, J., 374
life events questionnaire, 242
limbic structures, 163, 373
limbic–hypothalamic–pituitary–adrenal (LHPA) axis, 399
Lindgren, K. A., 280
linear growth curves, in GCMs, 11–12
Lofgren, Z., 217
Lo–Mendell–Rubin likelihood ratio test (LMR-LRT), 18–19
longitudinal studies
compared to cross-sectional studies, 5
emotion regulation, 379–380
importance of, 5
infant attachment, 249–250
infant attention, 243–244
infant temperament and childhood/adolescent behavior, 246–248
linking of emotional regulation to behavior, 372–373
missing data, 21
parenting influences, 301
psychological traits in infancy, genetic basis, 235
sample size, 21
sleep disturbances and anxiety, 220–221
specific language impairment (SLI), 146–147
statistical approaches, 6
Luebbe, A. M, 374
Lundy, B., 368
Lytton, H., 300–301

McClenon, F. J., 50
Maccoby, E. E., 292–293
McCormick, R., 425
McDonald, R., 300
McGregor, W., 66
McMahon, R. J., 488, 489
macrosystem influences, disaster exposure, 396–397
macro-theories, 66
madness and creativity, 68–71
magnetoencephalography (MEG), 183
Main, M., 248
major depressive disorder, 219
Mancini, A. D., 400
MAOA variable number tandem repeat (MAOA-u VNT), 245–246
mapping hypothesis, language deficits, 147
Marganska, A., 378
Markus, H. R., 414
Marsee, M. A., 322–323, 401
Marsh, A. A., 167, 168, 169
Martin, J. A., 292–293
mathematics, difficulty with, 259, 260, 266
Matsuura, N., 114
Maudsley Hospital, UK, 63, 82n1
meaning-making, 66, 71
meiosis, 32
Meltzoff, A. N., 186
memory
and neurocognition, 202–203
non-verbal, 146
phonological deficits, in SLI, 145–146
working memory, 109, 147
Mence, M., 295
mental health problems
see also anxiety; conduct disorder (CD); depressive disorders; generalized anxiety disorder (GAD); obsessive compulsive disorder (OCD); oppositional defiant disorder (ODD); phobias; schizophrenia; separation anxiety disorder (SAD)
cultural perspectives, 423–424
referral for treatment, 475
Mervis, C. B., 144
mesosystem influences, disaster exposure, 397
message-based interventions, 56
Metacognition Index (MI), BRIEF, 104, 106, 108
Met/Met genotype, 241
Meynard, J., 402
microsocial coding systems, 293–294
microsystem influences, disaster exposure, 398
micro-theories, 65
miLife study, biology and environmental interactions, 54–55
Millennium Cohort Study, UK, 198
Mini-KISS assessment, sleep disorders, 224
Minnesota High Risk Study, 205
Minnisale, G., 65
mirror neurons, 163, 186
mixed models see hierarchical linear modeling (HLM)
mixed-effects models see hierarchical linear modeling (HLM)
mobile health (mHealth), 49, 56
mobile technology research, 51, 52
ability of small phones to gather ‘Big Data,’ 49–51
ability of technologies to capture symptoms in real time, 46–49
adaptive testing protocols, 48
advancing the study of psychopathology among children and adolescents, 45–60
advantage of mobile devices over pen-and-paper assessments, 47–48
applications using mobile technologies
miLife study of biology and environmental interactions in adolescents’ daily lives, 54–55
PalmPartners study of family processes/contextual triggers, 53–54
autism spectrum disorder (ASD), 48
confidentiality issues, 48–49
diary studies, 46–47
drawbacks and limitations of technologies for researchers, 55
ecological momentary assessment (EMA), 46–49, 51, 52, 53, 55, 56
electronic response formats for diary entry, 47
ethical concerns, 48
future research directions, 56–57
global positioning systems (GPS), 49–50
individualized prediction models, 47
interventions, mobile-phone-based, 52–53
message-based interventions, 56
pervasiveness of mobile technologies in lives of children and adolescents, 45
psychological states, collection of information about, 48
real time, capturing symptoms in, 46–49
response to surveys, 47
smartphones, 45, 49, 50
social network analysis, 50, 51
social support, 50, 51
tables (electronic), 45, 47
O’Connor, T. G., 220, 403
ODD see oppositional defiant disorder (ODD)
Odgers, C. L., 14
ohmage system, 47
Ollendick, T. H., 373
Olson, M., 75–76, 81
ontogenic influences, disaster exposure, 399–401
Oosterlaan, J., 109
Oosterling, I. J., 205–206
“Open Dialogue” (Finnish approach to therapeutic psychosis intervention), 75, 76, 81
oppositional defiant disorder (ODD), 484–486
see also conduct disorder (CD); disruptive behavior disorders (DBD)
and ADHD, 110
and ASD, 463
comorbidity, 161–162, 300
diagnostic criteria for, 165
empathy problems in, 161
key issues, 485–486
violence and aggression, 320
optical imaging, 183
Ortmann, M. R., 294
“outsider art” movement, 77
Overstreet, S., 393, 397, 398
Owens, E. B., 11
oxytocin receptor polymorphism (OXTR), 380
Ozonoff, S., 93, 109, 202
PalmPartners study, family processes/contextual triggers, 53–54
parallel combination theory, in SLI
collective domain-general and domain-specific inefficiency interaction, 152–153
defining, 151
inefficient domain-general causes, in context of intact modular development, 151
inefficient modularization, intact domain-general skills, 152
Pardini, D., 489
parental imprisonment, effects, 337–338
parent–child relationship/dynamics, 291, 296, 298–301, 353
and adolescence, 373–374
emotion regulation, 365, 366
parenting influences, 291–309
see also family context
antisocial behavior, 337
anxiety, 188
on child temperament and biology, 299–300
child-driven influences on parenting, 300–301
coercion theory, 296, 297–298
emotion regulation, 366
exposure to substances and parental crime, 337–338
gender-specific parenting variables, 335–336
interactions between parenting and child factors, 302
maladaptive parenting, 503
parental psychopathology, 503–504
parenting and child factors, interplay between, 299–302
parenting as contributor to development and transmission of risk and psychopathology, 350–352
parenting styles, 292
parent-related risk factors and child outcomes, 347–348
and peer processes, 318–319
psychiatric disorders in parents, 350
risk factors, 292–299
risk mechanisms, 296–299
social-cognitive, 295
stress response and psychopathology, 353–354
transactional processes between parents and children, 355
parent-training programs, 297
Parkinson’s Disease, 128
Parra, G. R., 377
passive rGE, 31, 32, 34
Paterson, S. J., 145
Paul, R., 204
PDD Behavior Inventory, 191
Pediatric Anxiety Rating Scale, 191
peer processes
antipathies, 316–317
antisocial behavior, 312, 313, 314, 317, 318, 319
and child psychopathology, 311–334
deviant peers, 318–319
dissimilarity, 317
externalizing of behavior problems
social and relational aggression, 321–323
violence and aggression, 319–321
Index

peers

friends and friendlessness, 311–312
homophily, 313
peer networks of adolescents, 50
peer rejection and enmity, 314–318, 322, 325
reciprocated relationships, 312–313
role of parenting, 318–319
social contagion, 313–314

Peets, E., 154
Pennington, B. F., 93, 109
performance-based (PB) tasks
see also executive functions (EF); real-world (RW) measures
among individuals with ADHD, 100–103, 110–111
among individuals with ASD, 95–97, 108–109
among individuals with TS, 105, 113
color matching, 109
interchangeability of performance-based and real-world assessment, 126–127
purpose of PB tasks, 91
sampling of measures, 115–125, 126
spatial span, 109
visual tasks, 109
working memory tasks, 109
personal distress, and empathy, 162, 163
perspective taking, 69, 163, 164, 168, 173, 186
advanced, 373
affective, 169, 171
cognitive, 169
Peters, C., 205–206
Petersen, I. T., 15
Pfeffer, C. R., 402
phenomenological attitude, 69
phenomimicry, 154
Philibert, R. A., 380
Phinney, J., 417
phobias, 216, 219
phones see mobile technology research; smartphones
phonological memory deficits, in SLI, 145–146
Pickens, J., 368
Pierpoint, E. I., 146
Pina, A. A., 398, 399–400
Pinčus, D. B., 219
Pinkser, S., 143
Plomin, R., 253
Pochmann, J., 209–210
Pogge-Hesse, P, 412
polygenic risk score analytic approach, 253
polymorphisms (gene variants)
candidate gene association design, 236
comorbidity, 273
developmental cognitive neuroscience, 188, 189
generalist genes effects, 266, 267
neurocognitive markers, early, 199, 201
oxytocin receptor polymorphism (OXTR), 380
as risk factor for psychopathology, 199
single nucleotide polymorphisms (SNPs), 263, 457
polynomial trajectories, 12
polyphony theory, 74, 75
polysomnography, 216, 220
positron emission tomography (PET), 183
postmodernism, 81
post-traumatic stress disorder (PTSD), 396, 397, 398, 400–401, 403, 448
Poelín, F., 323
poverty and disadvantage, growing up in, 348–350, 357, 358
Prader-Willi syndrome, 259
praxis tasks, 144
prefrontal cortex, 188, 209, 236, 376, 378, 505, 506
premature infants, 198
proactive aggression, 323–324
Procedural Deficit Hypothesis (PDH), 145, 148
propositional codes, 66
PsychINFO database, 237
psychoanalysis, 70
Psychodynamic Diagnostic Manual, 439
psychodynamic theory, 70
psychopathic traits, 166
psychosis
see also schizophrenia
attenuated psychosis syndrome, 445
description, 81
“Open Dialogue” (Finnish approach to therapeutic psychosis intervention), 75, 76, 81
PubMed database, 237
quadratic trajectories, 9, 12
quantitative research, 31, 267
quantitative trait locus (QTL) model, 263
quantitative trait neural processes (QTN) model, 264
quartic trajectories, 12
quasi-experimental research designs, family-based
see also family context; siblings, research on adoption-at-birth, 34
causal inferences, 32
confounding, genetic, 31, 32, 34
cousin-comparisons, 33–34, 35
environmental risk factors, 31–35
implications for developmental psychopathology, 36–37
multiple family relationships, 32
offspring of siblings/twins, 31, 33–34, 35
sibling comparisons, 32–33, 35
smoking during pregnancy and ADHD, 30, 35–36
validity, 32
in vitro fertilization, 34–35, 36
questionnaire-based research, real-world (RW) assessment of EF, 91–92
Qunaq, T., 414
Ramsden, S. R., 376
random coefficient models, 5
random effect, 8
randomized controlled trials (RCTs), 296, 297, 299
rapid eye movement (REM) sleep, 220
Ravenscroft, I., 65, 80
reactive aggression, 323–324
reading disorder (RD), 110
realization, and the arts, 62, 64, 68
real-world (RW) measures
see also executive functions (EF); performance-based (PB) tasks among individuals with ADHD, 98–99, 110
among individuals with ASD, 94, 104, 106–107, 108
among individuals with TS, 104, 112–113
assessment tools, 91–92
interchangeability of real-world and performance-based assessment, 126–127
purpose of approach, 91
recreational vs. creative imaginations, 65
Reich, W., 51
rejection, by peers, 314–316, 322, 325
relational aesthetics, 66–67, 81
relationality, 18, 62, 291, 438
see also relational aesthetics
and the arts, 62, 63, 64, 74, 75
participatory and relational approaches to arts and health, 66–71
relational aggression, 312–313, 317, 321–323, 328, 339, 489
reparative function of the arts, 62, 64, 71
representation, and the arts, 62, 63, 64, 67, 71
Research Domain Criteria, 200
Revised Infant Behavior Questionnaire, 245
Ridiculusmus (UK theatre company), 74, 81, 82
risk factors
see also socioeconomic status (SES) and ADHD, 30
adolescent psychopathology, 502–505
adverse circumstances, 345–363
autistic traits, in non-autistic psychopathology development, 465–467
concept of risk, 345
cultural and contextual deficits, compounding effects, 504–505
culture, risk and wellbeing, 417–418
ey early environmental, and psychopathology, 29–30
economic hardship, 502–503
environmental stress, 199
family-based quasi-experimental designs for environmental risk factors, 31–35
maladaptive parenting, 503
neurocognition, 209–210
parental psychopathology, 503–504
parenting influences, 292–299
parent-related, 347–348
and risk mechanisms, in parenting, 296–299
smoking during pregnancy (SDP), 30–31
suicide risk, and ameliorative effects of communal cultural continuity, 419–421
RMSEA (root mean squared error of approximation), 19
Robbs, T., 63
Robins, L. N., 487
Rogosch, F. A., 372
Rommelse, N., 205–206
Romney, D. M., 300–301
root mean squared error of approximation (RMSEA), 19
Index

Rose, S. A., 201
Roth, I., 65
Roth, J. H., 298
Rothbart’s Infant Behavior questionnaire, 244

Sachse, M., 114
Sagan, O., 62, 63, 67, 71, 74
Salloum, A., 397, 398
sample size, 21
sampling
 convenience samples, 36
 epidemiological samples, 36
 experience sampling methodologies, 46
 performance-based (PB) tasks, 115–125, 126
size of sample, 21
Sampson, R. J., 20, 21
Samyn, V., 111–112, 126, 127
Sandler, I., 394
“savages,” 411
Scaramella, L. V., 398
Scharmer, C. O., 82n6
Scheeringa, M. S., 397, 398
schizophrenia, 444–445
 see also The Eradication of Schizophrenia in Western Lapland (Hayes and Woods)
and the arts, 65, 74, 77
late diagnosis, 205, 207
schooling effects, gender-specific, 338–339
Schultz, L. A., 369–370
Schwarz, B., 376

science
 see also neuroscience
 “blind spots” in, 65–66, 70
 bridging practices between real world and scientific theory, 66, 78–79
 cognitive science developments, 70
developmental, and psychodynamic theory, 70
relationship with the arts, 67, 80
SDP see smoking during pregnancy (SDP)
Seidenberg, M. S., 145
Seikkula, J., 75–76, 81
self-awareness, development of, 367
self-reports, 19, 164, 168, 170
SEM see structural equation modeling (SEM)
sensory codes, 66
separation anxiety disorder (SAD), 215–216, 219
sequencing, 253–254

Serafica, F. C., 414
Sergeant, J. A., 109
serotonin-transporter-linked polymorphic region (5-HTTLPR) gene, 235
associations between common genetic variants and temperament/behavior, 244–245
associations between common genetic variants and visual attention, 241
fearfulness, anxiety and attention biases, in children, 188–189
and infant attachment disorganization, 248–249
longitudinal studies of infant temperament and childhood/adolescent behavior, 246
risk factor for psychopathology, 199
Shaw, D. S., 11
Shimamura, A. P., 79
short-term memory, phonological, 145–146
siblings, research on
 carry-over effects, 32
 full-siblings, 32–33, 35
 offspring of siblings/twins, 31, 33–34, 35
 sibling comparison quasi-experimental designs, 32–33, 35
Siffert, A., 376
Silverman, W. K., 403
Simonoff, E., 274
single nucleotide polymorphisms (SNPs), 263, 457
single-sex schools, 338
Skogli, E. W., 126
sleep disturbances, 215–232
and anxiety, 218–220
 cognitive processes, 223
definitions and assessment, 215–216
environmental influences, 222–223
genetic factors, 221–222
longitudinal studies, 220–221
mechanisms underpinning associations, 221–223
importance of healthy sleep, 217–218
measurement of, 216–217
normative sleep, 217
prevalence, 217
treatment, 223–225
SLI see specific language impairment (SLI)
Slopen, N., 202
smartphones, 45, 49, 50
Smith, T., 167
specific language impairment (SLI) (cont’d)
 prevalence, 140
 social and emotional difficulties in,
 146–147
 subgroups, 142, 143, 144, 145
 syntactic impairment, 145, 146, 147
 usefulness of term, 139
 verbalizing strategies, 148
 and Williams syndrome, 142, 143, 144
 specific learning disabilities (SLDs), 259,
 260, 261, 266
spectator, role in aesthetic experience,
 66–67
speech dyspraxia, 144
Spell, A. W., 398
spirit possession, 423
state empathy, 162, 164
state space grid (SSG), 294, 295
statistical approaches, 6
Steinberg, L., 314
stimulus–onset asynchrony (SOA), 242
Strange Situation
 emotion regulation, 369, 370
 gene identification, in infancy, 248–250
Strayer, J., 167
Stroop test, 111, 112
structural equation modeling (SEM), 8, 19
subclinical traits, 274, 464
subcortical structures, 185, 187, 373
subgroups, 252, 281, 301
 autistic traits, in non-autistic
 psychopathology development,
 462, 467
 conduct disorder (CD), 486, 487,
 488, 490
 specific language impairment (SLI), 142,
 143, 144, 145
 trajectories/trajectory-modeling
 techniques, 7–8, 9, 10, 11, 15,
 19, 22
substances, exposure to, 337–338
substance/alcohol dependence, 337, 450
suicide risk, and ameliorative effects of
 communal cultural continuity,
 419–421
superior temporal sulcus (STS), 184
surface hypothesis, language deficits, 147
 sympathy, vs. empathy, 162–163
synaptosomal-associated protein
 (25KDa), 246
syntactic impairment, in SLI, 145, 146, 147
tables (electronic), 45, 47
taxonomical theories/theoretical models,
 testing, 14–15
taxonomy, developmental see developmental
taxonomy (Moffitt)
Taylor, Z. E., 300
television coverage, disasters, 396
temperament
 associations between common genetic
 variants and temperament/behavior,
 246–248
 fearfulness, anxiety and attention biases, in
 children, 187–189
 parenting influences on, 299–300
Teplin, L. A., 501
Terranova, A. M., 400, 403
Thal, D. J., 203
theatre and performance, role in treatment of
 mental disorders, 63, 64
see also arts, the
 contemporary performance practice, 65
 socially engaged theatre, 74
 theatre merely reflecting the world vs.
 theatre refashioning or extending the
 world, 79
theory of mind (ToM), 65, 78, 163, 186
autistic traits, in non-autistic
 psychopathology development,
 459, 464
third space concept, and the arts, 62, 63, 71
This Room, play (Dean), 61–65, 68,
 69, 82n1
Head Hand Head as first incarnation,
 64, 82n1, 82n3
tic disorders, 112, 444
see also Tourette’s syndrome (TS)
Todd, R. D., 457
Tomblin, J. B., 154
Tourette’s syndrome (TS)
 Diagnostic and Statistical Manual of
 Mental Disorders (DSM), 444
 performance-based (PB) tasks, 105
 real-world (RW) measures, 104
 vs. typically developing controls, ASD and
 ADHD, 112–113, 114
Tower of London tasks, 148
TPH2 gene see tryptophan hydroxylase 2
 gene (TPH2)
trajectories/trajectory-modeling techniques,
 5–27
see also longitudinal studies
advantages of utilizing, 6
choice of approaches, 6
cubic, 12
data sources, 19–20
defining, 6
developmental periods, 20–21
data sources, 19–20
defining, 6
elements of applications, 11–17

group-based trajectory models (GBTMs), 6, 7, 9–10, 12–16
growth curve models (GCMs), 5, 7, 8–9, 11–12, 16–17
growth mixture models (GMMs), 6, 7, 11, 15–16
hypothetical, 7
latent class growth models (LCGMs), 6, 7
longitudinal studies, 5, 6
measures of behavior, 17–18
methodological considerations, 17–22
model selection, 19
number of trajectories and model fit, 18–19
overview of research approaches, 6–11
polynomial, 12
quadratic, 9, 12
quartic, 12
sample size, 21
software packages, 23
subgroups, 7–8, 9, 10, 11, 15, 19, 22
taxonomical theories/theoretical models, testing, 14–15
testing effectiveness of interventions using trajectory modeling, 15–17
U-shaped, 9

tryptophan hydroxylase 2 gene (TPH2), 189, 241–242
TS see Tourette’s syndrome (TS)
Turner, S., 78, 79, 82n11

twin research
and ADHD, 265

twin research
autistic traits, in non-autistic psychopathology development, 457–458

covariate control design, 264
heritability, 261

twin research
learning disabilities, etiology, 260, 261
non-shared (individual specific) environments, 261
quasi-experimental designs, 33–34
shared (common) environments, 261

Twin Early Development Study (TEDS), 261–262, 265

Type I error rate, 6

Ullmann, M. T., 146
unconscious, the, 70
Underwood, M. K., 50
United States
adolescent offenders with disorder, policy for, 510
education system, 415, 421
Hurricane Katrina, 397, 402
independence, valuing of, 418
North America, study of Indigenous youth of, 412–413, 419–423

validity, family-based quasi-experimental designs for environmental risk factors, 32, 34

Val/Val genotype, 241

Van den Oord, E. J., 221
van der Lely, H. K. J., 144, 145
Van Ijzendoorn, M. H., 249
Van Rooij, D., 110
Varela, E., 70, 82n6
Varela, R. E., 402
Vargas, L. A., 414
Vargha-Khadem, F., 144
ventral striatum, 166
Viding, E., 165

violence

see also aggression; callous-unemotional (CU) traits; conduct disorder (CD) and aggression, 319–321, 322, 325
inter-parental, 373

Visser, M. E., 114
visual coding techniques, 164
visual imagery, 70
vocal tics, in Tourette’s syndrome, 112

WAIS backward digit span task, 111
Walton, A. A., 376
Warden, D., 168, 169, 170
Weems, C. F., 393, 395, 397, 398, 399, 400, 403, 404
Wellcome Trust, UK, 63, 82n1
Wentz, E., 460
Werner, H., 412
Wernicke’s aphasia, 141
Westphal, M., 400
Whalen, C. K., 53
White, G., 74
Whitehouse, A. J. O., 280
Whittle, S., 300
Whittuck, D., 71, 74
Williams, D. M., 109, 126
Williams syndrome, 142, 143, 144
Wilson, M., 64
Wiltshire, S., 77
Wing, L., 77
wireless sensors, 46, 49
Wisconsin Card Sorting Task, 109, 126

word-likeness, 147
working memory, 109, 147
World Health Organization (WHO), 49
Disability Assessment Schedule (WHODAS 2.0), 438
writing, therapeutic nature of, 64

Zahn-Waxler, C., 368
Zeanah, C. H., 397, 398, 453
Zinc Finger Protein 675 (ZNF675) gene, 250