CONTENTS

FOREWORD

Stephen L. Buchwald

xvii

PREFACE:
COPPER CATALYSIS FROM A HISTORICAL PERSPECTIVE:
A LEGACY FROM THE PAST

Gwilherm Evano and Nicolas Blanchard

xix

CONTRIBUTORS

xxxiii

PART I FORMATION OF C–HETEROATOM BONDS

1 Modern Ullmann–Goldberg Chemistry: Arylation of N-Nucleophiles with Aryl Halides

Yongwen Jiang and Dawei Ma

3

1.1 Introduction, 3

1.2 Arylation of Amines, 4

1.3 Arylation of Amides, Imides, and Carbamates, 15

1.4 Arylation of Conjugated N-Heterocycles, 24

1.5 Synthesis of Anilines by Coupling with Ammonia or Synthetic Equivalents, 32

1.6 Conclusion and Future Prospects, 37

References, 37
2  Ullmann Condensation Today: Arylation of Alcohols and Thiols with Aryl Halides  
Anis Tlili and Marc Taillefer

2.1 Introduction, 41
2.2 Formation of C–O Bonds via Copper-Catalyzed Cross-Coupling Reactions with Aryl Halides, 42
  2.2.1 Coupling of Aryl Halides with Hydroxide Sources: Synthesis of Phenols, 42
  2.2.2 Coupling of Aryl Halides with Aliphatic Alcohols: Synthesis of Alkyl Aryl Ethers, 49
  2.2.3 Coupling Reactions of Aryl Halides with Phenols: Synthesis of Biaryl Ethers, 54
2.3 Formation of C–S Bonds via Copper-Catalyzed Cross-Coupling Reactions with Aryl Halides, 67
  2.3.1 Coupling of Aryl Halides with Sulfur Sources: Synthesis of Thiophenols, 67
  2.3.2 Coupling of Aryl Halides with Aliphatic Thiols: Synthesis of Alkyl Aryl Thioethers (or Alkyl Aryl Sulfides), 70
  2.3.3 Coupling of Aryl Halides with Aryl Thiols: Synthesis of Diaryl Thioethers (or Diaryl Sulfides), 74
2.4 Conclusion, 84
References, 86

3  Copper-Catalyzed Formation of C–P Bonds with Aryl Halides  
Carole Alayrac and Annie-Claude Gaumont

3.1 Introduction, 93
3.2 Arylation of Phosphines, 94
  3.2.1 Arylation of Diarylphosphines, 94
  3.2.2 Arylation of Dialkylphosphines, 95
  3.2.3 Application to the Synthesis of Bulky Tertiary Phosphine Ligands, 97
3.3 Arylation of Phosphine Oxides and Phosphites, 98
  3.3.1 Arylation of Phosphine Oxides, 98
  3.3.2 Synthesis of Aryl Phosphonates by Arylation of Trialkylphosphites and H-Phosphonates, 101
  3.3.3 Arylation of Other Phosphorus Derivatives, 108
3.4 Conclusion, 110
References, 110
4 Alternative and Emerging Reagents for the Arylation of Heteronucleophiles

Luc Neuville

4.1 Introduction, 113
4.2 Chan–Lam–Evans Coupling: Copper(II)-Promoted Oxidative Aryl Transfer from Arylboron Derivatives, 115
  4.2.1 Initial Discovery of the Chan–Lam–Evans Coupling, 115
  4.2.2 Developments in the Oxidative Copper-Mediated Arylation of Heteronucleophiles with Boronic Acids, 117
  4.2.3 Mechanism of the Coupling, 129
  4.2.4 Scope, 130
4.3 Copper-Promoted Aryl Transfer from Metallated Aryl Derivatives (Nonboron), 141
  4.3.1 Bismuth and Lead, 142
  4.3.2 Arylstannanes and Aryl-Alkoxysilanes, 146
  4.3.3 Aryliodonium Salts, 148
4.4 Copper-Catalyzed Arylation Reactions Involving Masked S- and N-Nucleophiles, 151
  4.4.1 C–S Bond Formation, 152
  4.4.2 C–N Bond Formation, 152
4.5 Copper-Catalyzed Direct Heterofunctionalization of Aromatic C–H Bonds, 160
  4.5.1 Functionalization of Acidic Aromatic C–H Bonds, 161
  4.5.2 Directed Aromatic C–H Bonds Functionalization, 166
  4.5.3 Intramolecular Copper-Catalyzed Heterofunctionalization of Aromatic C–H Bonds, 172
4.6 Conclusion and Future Prospects, 178
References, 178

5 Beyond Ullmann–Goldberg Chemistry: Vinylation, Alkynylation, and Allenylation of Heteronucleophiles

Kévin Jouvin and Gwilherm Evano

5.1 Introduction, 187
5.2 Copper-Mediated Alkenylation of Heteronucleophiles: Among the Best Routes to Heteroatom-Substituted Alkenes, 189
  5.2.1 Synthesis of Enamides, Enamines, and N-Alkenyl-Heterocycles, 189
  5.2.2 Synthesis of Enol Ethers, 201
  5.2.3 Synthesis of Vinyl Sulfides and Other Sulfur-Substituted Alkenes, 210
5.2.4 Synthesis of Vinylphosphonates and Phosphine Oxides, 215

5.3 Alkynylation of Heteronucleophiles: The Emergence of General Methods for the Synthesis of Heteroatom-Substituted Alkynes, 219
  5.3.1 Bringing Ynamides into the New Millennium: Copper-Mediated Alkynylation of Nitrogen Nucleophiles, 219
  5.3.2 Copper-Mediated Synthesis of Ynol Ethers: The First Development, 228
  5.3.3 Copper-Mediated Preparation of Alkynyl Chalcogenides, 229
  5.3.4 Synthesis of Phosphorus-Substituted Alkynes: The Development of Mild Protocols Based on Copper Catalysis, 230


5.5 Conclusion and Future Prospects, 233

References, 234

6 Aromatic/Vinylic Finkelstein Reaction 239
  Alicia Casitas and Xavi Ribas

6.1 Introduction, 239
6.2 Copper-Mediated Halogen Exchange Reactions in Aryl Halides, 241
  6.2.1 From Early Discoveries to Most Recent Reports, 241
  6.2.2 Copper-Mediated Fluorination of Haloarenes, 245
  6.2.3 Mechanistic Investigations in Aryl–Cu(III) Model Systems, 246

6.3 Most Recent Developments and Overview, 247
References, 249

7 Insights into the Mechanism of Modern Ullmann–Goldberg Coupling Reactions 253
  Alicia Casitas and Xavi Ribas

7.1 General View and Key Mechanistic Aspects, 253
7.2 Oxidation State of Copper Catalysts, 254
7.3 Identity of the Active Copper(I) Complex, 255
7.4 Activation Mode of Aryl Halides by Copper Complexes, 261
  7.4.1 Oxidative Addition/Reductive Elimination Pathway, 262
  7.4.2 SET Mechanism, 270
  7.4.3 AT Mechanism, 272
CONTENTS

7.4.4 Mechanism Involving $\pi$-Complexation of Copper(I) to Aryl Halides, 273
7.4.5 Mechanism Involving $\sigma$-Bond Metathesis, 275
7.5 Overview, Conclusions, and Future Prospects, 275
References, 277

PART II FORMATION OF C–C BONDS 281

8 Modern Copper-Catalyzed Hurtley Reaction: Efficient C-Arylation of CH-Acid Derivatives 283
Irina P. Beletskaya and Alexey Yu. Fedorov
8.1 Introduction, 283
8.2 Classical Hurtley Reaction, 285
8.3 Ligation Effect in Copper-Catalyzed Reactions of Aryl Halides with Carbanions, 286
8.4 Cascade Reactions Proceeding via a Hurtley Arylation Reaction, 293
8.5 Mechanism of the Copper-Catalyzed C-Arylation Reactions, 303
8.6 Concluding Remarks, 308
References, 308

9 Copper-Catalyzed Cyanations of Aryl Halides and Related Compounds 313
Thomas Schareina and Matthias Beller
9.1 Introduction, 313
9.2 Modifications and Updates of Classical Cyanation Reactions (Rosenmund–von Braun, Sandmeyer), 315
9.3 Copper-Catalyzed Cyanations of Aryl Halides, 316
9.4 Copper-Mediated Oxidative Cyanations, 324
9.5 Conclusion, 331
References, 331

10 Copper-Mediated Aryl–Aryl Bond Formation Leading to Biaryls: A Century after the Ullmann Breakthrough 335
Yoshihiko Yamamoto
10.1 Introduction, 335
10.2 Biaryl Synthesis by Coupling of Aryl Halides and Diazonium Salts, 336
10.2.1 Ullmann Couplings of Aryl Halides, 336
10.2.2 Coupling of Organocopper Reagents Generated from Aryl Halides, 342
10.2.3 Coupling of Aryl Diazonium Compounds, 346
10.3 Biaryl Synthesis by Coupling of Aryltin, Boron, and Silanes, 347
  10.3.1 Coupling of Organostannanes, 347
  10.3.2 Coupling of Organoboranes, 351
  10.3.3 Coupling of Organosilanes, 356
10.4 Biaryl Synthesis by Arylation Involving Arene C–H or C–C Bond Fission, 357
  10.4.1 Direct C–H Arylation of Arenes with Prefunctionalized Arylating Reagents, 357
  10.4.2 Direct C–H Arylation with Nonfunctionalized Arylating Agents, 368
  10.4.3 Decarboxylative Coupling of Benzoic Acid Derivatives, 373
10.5 Biaryl Synthesis by Oxidative Coupling of 2-Naphthols, 376
10.6 Conclusions and Outlook, 387
References, 388

11 Copper-Catalyzed Alkynylation, Alkenylation, and Allylation Reactions of Aryl Derivatives 401
Ren-Jie Song and Jin-Heng Li

11.1 Introduction, 401
11.2 Copper-Catalyzed Alkynylation of Aryl Derivatives, 402
  11.2.1 Synthesis of Aryl–Ynes by Stille-Type Cross-Coupling Reaction, 402
  11.2.2 Synthesis of Aryl–Ynes by Sonogashira-Type Cross-Coupling Reaction, 405
  11.2.3 Synthesis of Aryl–Ynes by Oxidative Cross Coupling of Alkynes and Arylboronic Acids, 422
  11.2.4 Synthesis of Aryl–Ynes by Decarboxylative Cross Coupling from Propiolic Acids, 424
  11.2.5 Synthesis of Aryl–Ynes by Direct C–H Functionalization of Arenes, 427
11.3 Copper-Catalyzed Alkenylation of Aryl Derivatives, 432
  11.3.1 Synthesis of Aryl–Enes by Stille-Type Cross Coupling, 432
  11.3.2 Synthesis of Aryl–Enes by Suzuki–Miyaura-Type Cross Coupling, 435
  11.3.3 Synthesis of Aryl–Enes by Heck-Type Cross Coupling, 437
  11.3.4 Synthesis of Aryl–Enes by Direct C–H Functionalization of Arenes, 441
  11.3.5 Synthesis of Aryl–Enes by Decarboxylative Cross Coupling, 444
11.4  Copper-Catalyzed Strategies for the Formation of Allyl–Aryl Bonds, 445
11.5  Conclusion and Outlook, 450
References, 450

12  Copper-Catalyzed Alkynylation and Alkenylation Reactions of Alkynyl Derivatives: New Access to Diynes and Enynes 455
Ruimao Hua

12.1  Introduction, 455
12.2  Copper-Catalyzed Synthesis of Symmetrical and Unsymmetrical 1,3-Diynes, 456
12.3  Copper-Catalyzed Synthesis of 1,4-Diynes, 468
12.4  Synthesis of 1,3-Enynes by Direct Reaction of Vinyl Halides with Alkynes, 468
12.5  Synthesis of 1,3-Enynes by Stille-Type Cross-Coupling Reaction, 474
12.6  Synthesis of 1,3-Enynes by the Suzuki–Miyaura-Type Cross-Coupling Reaction, 476
12.7  Synthesis of 1,4-Enynes by Allylation Reaction of Terminal Alkynes, 478
12.8  Conclusion, 480
References, 480

13  Copper-Mediated Alkenylation Reaction of Alkenyl Derivatives: A Straightforward Elaboration of 1,3-Dienes 485
Hao Li, Songbai Liu, and Lanny S. Liebeskind

13.1  Introduction, 485
13.2  Symmetrical 1,3-Dienes by Homocoupling Reaction of Vinyl Derivatives, 486
  13.2.1  Coupling of Vinylboranes, 486
  13.2.2  Coupling of Vinylsilanes, 487
  13.2.3  Coupling of Vinylstannanes, 489
  13.2.4  Coupling of Vinyl Halides, 493
  13.2.5  Miscellaneous, 496
13.3  Unsymmetrical 1,3-Dienes by Cross-Coupling Reactions, 496
  13.3.1  Synthesis of 1,3-Dienes by Stille-Type Coupling, 497
  13.3.2  Synthesis of 1,3-Dienes by Suzuki-Type Coupling, 505
  13.3.3  Synthesis of 1,3-Dienes by Heck-Type Coupling, 508
13.4  Conclusions, 510
References, 511
14 Emerging Areas in Copper-Mediated Trifluoromethylations of Aryl Derivatives: Catalytic and Oxidative Cross-Coupling Processes

Kévin Jouvin, Céline Guissart, Cédric Theunissen, and Gwilherm Evano

14.1 Introduction, 515
14.2 Copper-Catalyzed Trifluoromethylation of Aryl Halides: A Long-Lasting Quest Finally Reached, 517
14.3 Copper-Mediated Oxidative Trifluoromethylation Reactions, 523
14.4 Conclusion and Future Prospects, 528

References, 528

PART III APPLICATIONS OF COPPER-CATALYZED CROSS-COUPLING REACTIONS: HETEROCYCLES, NATURAL PRODUCTS, PROCESS, AND SUSTAINABLE CHEMISTRY

15 Copper-Mediated Cyclization Reactions: New Entries to Heterocycles

Daoshan Yang and Hua Fu

15.1 Introduction, 533
15.2 Cyclization by C–N Bond Formation, 534
    15.2.1 Copper-Catalyzed Synthesis of Pyrroloindole Derivatives, 536
    15.2.2 Copper-Catalyzed Synthesis of Benzimidazole Derivatives, 536
    15.2.3 Copper-Catalyzed Synthesis of 1,3-Dihydrobenzimidazol-2-One Derivatives, 544
    15.2.4 Copper-Catalyzed Synthesis of Quinazolines, 547
    15.2.5 Copper-Catalyzed Synthesis of Quinazolinone Derivatives, 551
    15.2.6 Copper-Catalyzed Synthesis of 1,2,4-Benzothiadiazine 1,1-Dioxides, 552
    15.2.7 Copper-Catalyzed Synthesis of 1-Aryl-2-Thioxo-2,3-Dihydroquinazolin-4(1H)-Ones, 553
    15.2.8 Copper-Catalyzed Synthesis of Indole Derivatives, 554
    15.2.9 Copper-Catalyzed Formation of Cyclic Enamides: Efficient Routes to Unsaturated Lactams, Alkylideneazetidines, and Dihydropyrroles, 556
    15.2.10 Copper-Catalyzed Synthesis of 1,4-Benzoxazines, 558

15.3 Cyclization by C–O Bond Formation, 560
    15.3.1 Copper-Catalyzed Synthesis of Benzoxazole Derivatives, 560
15.3.2 Copper-Catalyzed Synthesis of Cyclic Enol and Aryl Ethers, 562
15.3.3 Copper-Catalyzed Synthesis of Enol Lactones and Benzopyranones, 565

15.4 Cyclization by C–C Bond Formation, 567
15.4.1 Copper-Catalyzed Synthesis of Indole Derivatives, 567
15.4.2 Copper-Catalyzed Synthesis of 3-Acyloxindoles, 569
15.4.3 Copper-Catalyzed Synthesis of Isoquinoline and Isoquinolinone Derivatives, 571
15.4.4 Heterocyclic Synthesis Based on a Copper-Catalyzed Sonogashira-Type Cross Coupling, 574

15.5 Copper-Catalyzed Double Cross-Coupling Reactions for the Assembly of Heterocycles, 576
15.5.1 Synthesis of Benzoxazoles and Oxazoles by Double Copper-Catalyzed Cross Coupling, 576
15.5.2 Synthesis of Benzimidazoles by Double Copper-Catalyzed Cross Coupling, 578
15.5.3 Synthesis of Benzofurans by Double Copper-Catalyzed Cross Coupling, 579
15.5.4 Synthesis of Benzimidazo[1,2-b]isoquinolin-11-one Derivatives by Double Copper-Catalyzed Cross Coupling, 580
15.5.5 Synthesis of Pyrrole and Thiophene Derivatives by Double Copper-Catalyzed Cross Coupling, 581

15.6 Conclusion and Future Prospects, 583
References, 584

16 Application of Copper-Mediated C–N Bond Formation in Complex Molecules Synthesis

Jihoon Lee and James S. Panek

16.1 Introduction, 589
16.2 Aryl Amination in Complex Molecule Synthesis, 590
16.3 Aryl Amidation in Complex Molecule Synthesis, 595
16.4 Arylation of N-Heterocycles in Complex Molecule Synthesis, 601
16.5 Vinyl Amidation in Complex Molecule Synthesis, 606
16.6 Alkyne Amidation in Complex Molecule Synthesis, 620
16.7 Intramolecular C–N Bond Formation in Natural Product Synthesis, 622
16.7.1 Copper-Mediated Synthesis of Small- to Medium-Sized N-Heterocycles in Total Synthesis, 622
16.7.2 Copper-Mediated Macrocyclization by C–N Bond Formation in Natural Product Synthesis, 632

16.8 Summary and Outlook, 637
References, 638
17 Natural Products and C–O/C–S Bond-Forming Reactions: Copper Showed the Way
Doron Pappo

17.1 Introduction, 643
17.2 Total Synthesis of Naturally Occurring Diaryl Ethers by Arylation of Phenols, 644
17.3 Intramolecular Diaryl Ether Bond-Forming Reactions, 659
  17.3.1 Macrocyclization, 659
  17.3.2 Small- to Medium-Sized Oxygenated Heterocycles, 663
17.4 Arylation of Alcohols, 666
17.5 Vinylation of Alcohols, 673
17.6 Copper-Mediated C–S Bond Formation in Natural Product Synthesis, 675
17.7 Conclusion and Future Prospects, 677
References, 678

18 Copper-Catalyzed C–C Bond Formation in Natural Product Synthesis: Elegant and Efficient Solutions to a Key Bond Disconnection
Morgan Donnard and Nicolas Blanchard

18.1 Introduction, 683
18.2 Natural Biaryls by Copper-Catalyzed Cross Coupling, 684
  18.2.1 Classical Ullmann Cross-Coupling Reaction, 685
  18.2.2 Oxidative Biaryl Coupling of Phenols and Naphthols, 687
18.3 Copper-Catalyzed 1,3-Enyne Formation, 691
18.4 Copper-Mediated Synthesis of Dienes, Trienes, and Extended Polyenes, 694
  18.4.1 Copper-Mediated Synthesis of 1,3-Dienes, 694
  18.4.2 Copper-Mediated Synthesis of 1,3,5-Trienes, 701
  18.4.3 Copper-Mediated Synthesis of Extended Polyenes, 704
  18.4.4 Copper Salts as Essential Cocatalysts of Palladium-Catalyzed Stille Cross-Coupling Reactions, 704
18.5 Copper-Catalyzed Synthesis of 1,N-Polyynes Natural Products, 711
  18.5.1 Cadiot–Chodkiewicz Strategies, 712
  18.5.2 Eglinton Strategies, 714
  18.5.3 Hay Strategies, 716
  18.5.4 Copper-Catalyzed Synthesis of Skipped Dienes, 718
18.6 Conclusions and Future Prospects, 718
References, 719
19 Process Chemistry and Copper Catalysis 725

Klaus Kunz and Norbert Lui

19.1 Introduction and Scope, 725
19.2 Copper versus Palladium, 727
19.3 Applications, 727
  19.3.1 Materials Sciences, 727
  19.3.2 Pharmaceutical Chemistry, 731
  19.3.3 Crop Science Chemistry, 737
19.4 Conclusion, 739
References, 740

20 Reusable Catalysts for Copper-Mediated Cross-Coupling Reactions under Heterogeneous Conditions 745

Zhiyong Wang, Changfeng Wan, and Ye Wang

20.1 Introduction, 745
20.2 Copper Nanoparticle-Catalyzed Cross-Coupling Reactions, 746
  20.2.1 C–C Bond Formation, 746
  20.2.2 C–N Bond Formation, 750
  20.2.3 C–S Bond Formation, 754
  20.2.4 C–O Bond Formation, 757
  20.2.5 C–Se Bond Formation, 762
20.3 Supported Copper-Catalyzed Cross-Coupling Reaction, 766
  20.3.1 C–C Bond Formation, 766
  20.3.2 C–X Bond Formation, 769
20.4 Conclusion, 780
References, 780

INDEX 785