Table of Contents

Preface .. iii

Chapter 1: Introduction to DSP-Based Testing .. 3
 Overview of Testing 3
 Emulation versus Automation 5
 Invisible Instruments 5
 Numerical Vectors 6
 Vector Transfer ... 7
 Vector and Array Processing Speed 7
 Processor Speed ... 8
 Floating-Point Mathematics 9
 Phase-Lock Synchronization 10
 Representative Digitizer 10
 DSP-Based Test Advantages Summarized 13
 Price of Using DSP 13

Chapter 2: Accuracy and Speed of Emulated Instruments 17
 Hardware Emulation 17
 Integration versus Filtering for AC Measurements 17
 Coherent Measurement 19
 Unit Test Period .. 19
 Coherent Filtering 22
 Correlation ... 23
 Fourier Voltmeter 25
 Software Version of the FVM 27
 Orthogonal Signals and Fourier Voltmeters 27
 DFT and FFT ... 28
 Synthesis ... 29
 Frequency Leakage 30
 Graphical Example of FFT Application 31

Chapter 3: Noncoherent Sampling ... 35
 Reconstruction ... 35
 Time and Spectral Vectors 35
 Imaging and Noncoherent Undersampling 36
 Heterodyning and Reconstruction 36
 Rules of Imaging 37
 Sampling Rates and Spacing 37
 Nyquist's Limit ... 37
 Universal Rule for Noncoherent Sampling 38
 Sine-X-over-X Distortion and Correction 39
 Receiver/Reconstruction Filtering 41
Chapter 4: Coherence .. 45
Vector Periodicity .. 46
Amount of Information in a Vector 46
Effective Sampling Rate 47

Chapter 5: Multitone Testing 61
Multitone Distortion Measurement 62
Multitone Frequency Measurement 62
Multitone versus Single Tone Applications 64
Error Sources and Accuracy 65
Effect of Device Uncertainty on Multitone Tests 65
Factors Affecting Accuracy 67
Out-of-Band Measurement Uncertainty 71
Estimating Multitone Accuracy 71
Estimating Multitone Uncertainty Due to Quantization 71

Chapter 6: Vector Operations for DSP Testing 77
Vector Operations in DSP-Programming 79
Program Examples 80

Chapter 7: Event Digitizing 87
Explicit versus Implicit Sampling 88
Event Digitizer 89
Testing Tape Decks 91

Chapter 8: Measuring Random Noise 99
Equivalent Input Noise 99
Normalized Spectral Noise Density 99
Typical DSP Procedure 101
Input Resistors 101
Coupling Capacitor 101
Noise Bandwidth 102
Accuracy and Repeatability of Noise Measurements 102
Statistical Sampling versus DSP Sampling 103
Estimating the Repeatability of Local Measurements 103
Cautions about Averaging 104
Computing Spectral Power from a Sparsely Sampled Signal 105
Exercises 106

Chapter 9: Introduction to A/D Testing 115
A/D versus D/A Conversion 115
Transfer Maps 115
Transmission Parameters versus Intrinsic Parameters 117
Conversion Formats and Types 118
Uncertainty and Distortion of the Ideal ADC 118
DAC Transfer Error 119
Superposition Error 120
Adapting D/A Parameters to ADC Measurement .. 122
Probabilistic Estimation of ADC Input Noise .. 123
Dynamic Testing .. 123
Noise Improvement Figure ... 124
Random Voltage Noise .. 125
Induced Jitter Noise .. 125
Equivalent Number of Bits ... 126
Idle Noise and Noise Power Ratio .. 126
Separating Quantization Distortion from Noise .. 127

Chapter 10: Techniques for Flash Converter Testing 133

Linear Histogram Testing ... 135
Histograms with Sparkle Codes and Missing Codes 137
Obtaining the Transfer Function from the Histogram 139
Integral Linearity Error from the Transfer Curve 139
ILE Directly from DLE: A Fast Method ... 139
Centerlines for Histogram-Derived ILE .. 141
Integral Linearity from Weighted Code Centers 141
MIL-STD Regression Line Approach .. 144
Extreme Values of Linearity Error .. 145
Differential Linearity from Weighted Code Center Information 146
Dynamic Testing .. 146
Sinusoidal Histogram Testing ... 147
Using the Tally to Find MAT T2 .. 148
Errors with Sinusoidal Histograms ... 149
Spectral Analysis .. 154
Noise Measurement .. 154
Noise Separation ... 154
Progressive Spectra .. 156
Unscrambling ... 156
Differential Phase (DP) ... 156
Differential Gain (DG) ... 161

Chapter 11: Incremental Models for DSP-Based Testing 165

with Applications to Transient and Flutter Measurement 165

Introduction .. 165
Limitations of Vector Processors ... 165
Incremental Modeling ... 166
Comparison with Continuous Equations ... 167
RC High Pass Model ... 169
Time Scaling and Normalization .. 170
Ballistic Peaks ... 170
Ballistic Peak Detection Models .. 171
Generalized Approach .. 172
Wow and Flutter Measurement ... 172
DIN/IEEE/ANSI/Quasi-Peak Detection ... 172
DIN Frequency Weighting ... 174
Importance of Phase Response in Peak-Reading Instruments 175
Finite Impulse Response (FIR) Filtering .. 177