Contents

Preface

PART I GENERAL CONCEPTS

1 Introduction to Sustainability
 Introduction
 Sustainability: a term to stay
 Defining a sustainable company
 Example of an unsustainable food industry
 The promoted three dimensions of sustainability
 Shortcomings of three-dimensional representation
 A quest for the environment
 Nonsustainable versus sustainable
 The nonsustainable food company
 The sustainable food company
 Reliance on renewable energy
 Ingredients and materials from renewable resources
 Water neutral
 Net-zero air emissions
 Biodegradable liquid and solid wastes
 Is a 100-percent sustainable food company attainable?
 A short-term approach to sustainability
 Defining boundaries
 Differentiating efficiency from sustainability
 Sustainability from the business point of view
 Weakness of doing nothing
 Strengths and opportunities
 Summary
 References

2 Sustainability and the Environment
 Introduction
 The Earth as a system
 Biogeochemical cycles
 The carbon cycle
 The preindustrial cycle
 The modern carbon cycle
 The hydrologic cycle
 The nitrogen cycle
Contents

Alteration of the nitrogen cycle 30
The oxygen cycle 31
The phosphorus cycle 31
The sulfur cycle 32
Importance of Earth’s ecosystems 32
Natural ecosystems 32
Services provided by natural ecosystems 33
Overexploitation of “common goods” 34
Man-made ecosystems: the food production system 35
Ecological footprint and earth’s carrying capacity 36
Ecological footprint 36
Earth’s carrying capacity 36
Collision of society and economy with the environment 38
The environment 38
Climate change 38
The political aspects of climate change 38
Society 40
Increasing population 40
Rising standards of living 41
Faster lifestyle demands more energy 42
The economy 42
Consumerism 42
Economic system based on growth 43
Summary 43
References 43

3 The Environmental Impact of the Food Supply Chain 47

Food supply chain 47
A food supply chain model 47
Environmental impact of the food supply chain 49
Impact of production of raw materials 49
Agriculture 49
Animal production 61
Fisheries 62
Food ingredients and additives 64
Case of selected additives/ingredients impacts 65
Impact of packaging 68
Impact of processing 68
Electricity and thermal energy 70
Water 70
Solid waste 71
Chemicals used in cleaning and sanitation 71
Impact of distribution 72
Distribution centers 72
Data processing 72
Transportation 73
The refrigerated supply chain 73
Impact of consumption 74
Postconsumption 75
PART II MANAGEMENT ASPECTS

4 Impact Assessment and Intensity Metrics

Introduction 81
Life cycle assessment 81
Applications of LCAs 82
Problems associated with LCAs 84
Conducting an LCA using ISO standards 84
Definition of goal and scope 85
Life cycle inventory analysis 87
Allocation 89
Life cycle impact assessment 91
Life cycle interpretation 95
Reporting 95
Single indicators for LCAs 95
Variations of LCAs 96
Well-to-wheel LCA 97
BASF’s eco-efficiency analysis 98
Ecological footprint with spider web diagrams 99
SC Johnson’s GreenList™ 100
Intensity indicators and metrics 100
Indicators applied to the food industry 101
Ecological indicators 101
Process indicators 102
Transportation indicators 103
Institutional indicators 104
Summary 105
References 106

5 Improving Efficiency

Efficiency and sustainability 109
Extra temporary step in the sustainability staircase 110
Improving efficiency 111
Creating a long-term “genuine green philosophy” 112
Managing efficiency improvements 113
Starting with efficiency improvements 113
Mapping the operation 113
Defining boundaries 117
Selecting metrics 117
Assessing the current situation 117
Ranking processes according to impacts 117
Identifying the main burdens 119
Starting with the low-hanging fruit instead 119
Efficiency improvements using the Plan-Do-Check-Act cycle 119
Other tools with application in efficiency improvement 120
Sulfur dioxide 155
Nitrogen oxides 155
Carbon monoxide 156
Particle matter 157
Volatile organic compounds 158
Ammonia emissions 158
Ground-level ozone 158
Emissions with global impact 160
 Greenhouse gases 160
 Ozone-depleting substances 163
Emissions inventories 165
 Emissions inventories for greenhouse gases 166
 Conducting a GHG inventory 166
 Calculation of emissions 168
 Example of calculation of emissions 170
 ISO 14064 172
Reducing emissions 173
 Increasing the efficiency of energy utilization 173
 Selection of energy sources 173
 Reducing emissions from stationary sources 174
 Carbon dioxide 174
 Nitrogen oxides 174
 Sulfur dioxide 175
 Particle matter 175
 Reducing emissions from processes 176
 VOCs 176
 Waste and waste treatment 176
 By-products of the meat industry 177
 Emissions from the use of electricity 178
 Emissions from refrigeration 178
 Carbon capture and storage 183
 Carbon capture 183
 Carbon storage 184
 Optimizing transportation and logistics 185
Summary 186
References 186

9 Water and Wastewater 189

The water resource 189
 Freshwater sources 189
 Water aquifers 189
 Surface water 191
 Interactions of surface water with groundwater 192
 Freshwater available for consumption 193
 Extraction from aquifers 193
 Use of surface water 195
 Desalinization 196
 Toward a water crisis 198
Water and food production 199
Virtual water 199
Water footprint 200
Water footprint of a nation 200
Water footprint of a business 201
Water footprint of agricultural products 202
Water neutrality 202
Efficiency of water use in food processing 204
Water use in food-processing facilities 205
Strategies for water reduction 206
Minimizing consumption 206
Process water reuse 208
Water recycling 208
Rainwater harvesting 209
Condensate recovery 210
Water replenishment 210
Wastewater treatment 210
Aerobic systems 210
Emissions from aerobic wastewater treatment 211
Advanced water treatment 212
Minimizing solids in wastewater 212
Anaerobic systems 214
The anaerobic process 214
Anaerobic wastewater treatment systems 215
Posttreatment after anaerobic step 217
Engineered natural systems 218
Constructed wetlands 219
Stormwater management 220
Summary 222
References 223

10 Solid Waste 227
Generation of solid waste 227
In fields and farms 229
From food-processing plants 231
During distribution and retailing 231
During consumption 232
Minimizing the impact of solid waste 233
Managing food wastes 233
At processing, distribution, and retail levels 233
At consumer's level 239
Managing nonfood wastes 239
At the field and farm levels 239
At food-processing plants, distribution, and retail levels 240
At consumer's level 241
Eco-industrial development 241
Industrial ecology 242
Eco-Industrial parks 243
Eco-industrial networks 243
Contents

Summary 243
References 244

11 Energy 247

Energy in a sustainability context 247
Energy and food production 247
Energy sources 248
Energy return on the investment 249
Energy quality 251
Embodied energy 253
Improving energy efficiency of food-processing plants 254
Energy in food-processing plants 254
Steam systems in food-processing plants 255
Direct-fire heating in food processing 256
Opportunities for energy-efficiency improvements 256
Process heat and steam systems 257
Efficiency of mechanical systems 259
Energy monitoring and management 266
Energy efficiency at the building’s level 267
Innovating technology 268
Low carbon and neutral carbon energy 269
Buying “green power” 269
On-site generation of “green power” 270
Energy-generation capacity and capacity factor 271
Solar and wind 272
Landfill gas and biogas 272
Biomass 273
Combined heat and power 274
Efficiency of CHP systems 276
Heat recovery 277
Low-grade heat with a heat pump 277
Low-pressure steam by vapor recompression 278
Applications of recovered heat 279
Absorption refrigeration 279
Summary 280
References 281

12 Packaging 285

Food packaging 285
Materials used in food packaging 285
Glass 286
Metals 286
Aluminum 286
Steel 287
Plastics 287
Paper 289
Textiles 289
Wood 289
Environmental impacts of food packaging 290
Contents

The positives 290
The negatives 290
Consumption of nonrenewable feedstocks 290
Impact of renewable feedstocks 291
Energy consumption for each material 292
Water consumption 296
Air, liquid, and solid emissions 297
Generation of postconsumer solid waste 300
Reducing the impact of packaging 301
Relative mitigation of packaging environmental impact 302
Recycling 303
Food safety and recycling 304
Use of reusable packages 306
Biobased polymers for packaging 306
Design for “X” 307
Design for the environment 307
Design for recyclability 308
Design for disassembly 308
Design for transportability 309
Design for minimization 309
Design for shelf life extension 309
Summary 310
References 310

13 Transportation 313

Introduction 313
Transportation modes 314
Indicators of transportation distance 317
Food miles 317
Ton-miles per gallon 317
Transportation efficiency 318
Factors that affect fuel economy 318
Transportation method and energy intensity 320
Transportation from grocery store to consumer’s home 322
Energy intensity in the transportation of food products 323
Refrigerated transport 324
Energy consumption in refrigerated transportation 324
Emissions from transportation 325
Diesel-powered vehicles 325
Air transport 326
Refrigerated transport 327
Impact from refrigerant escape 327
Reducing the impact of transportation 328
Trucks 328
Operational improvements 328
Long combination vehicles 330
Weight reduction and increased volumetric capacity 331
Aerodynamic drag and rolling instance 332