CONTENTS

PREFACE vii

LIST OF SYMBOLS xix

Chapter 1 INTRODUCTION 1
 1.1 Mechanics of Materials 2
 1.2 Scope of the Book 3
 1.3 Methods of Analysis 4
 1.4 Engineering Design 5
 1.5 Review of Static Equilibrium 6
 1.6 Internal Force Resultants 10
 1.7 Problem Formulation and Solution 13
 1.8 Application to Simple Structures 15
 Chapter Summary 26
 References 27

Chapter 2 CONCEPT OF STRESS 28
 2.1 Introduction 29
 2.2 Internal Axial Forces 29
 2.3 Normal Stress 31
 2.4 Bearing Stress in Connections 37
 2.5 Shearing Stress 38
 2.6 Stresses in Simple Structures 43
 2.7 Allowable Stress and Factor of Safety 52
 2.8 Design of Bars for Axial Loading 56
 2.9 Case Studies 60
 *2.10 Stress under General Loading 68
 Chapter Summary 77
 References 78

Chapter 3 STRAIN AND MATERIAL PROPERTIES 79
 3.1 Introduction 80
 3.2 Deformation 80
 3.3 Strain 81
 3.4 Components of Strain 84
 3.5 Materials 89
 3.6 Stress–Strain Diagrams 90
 3.7 True Stress and True Strain 97
 3.8 Elastic versus Plastic Behavior 98
 3.9 Hooke’s Law 99
 3.10 Poisson’s Ratio 102
 3.11 Generalized Hooke’s Law 108
 3.12 Strain Energy 113
 *3.13 Impact Strength 115
 *3.14 Fatigue 116
 3.15 Permanent Deformation 119
 3.16 General Properties of Materials 121
 *3.17 Selecting Materials 122
 Chapter Summary 127
 References 129

Chapter 4 AXIALLY LOADED MEMBERS 130
 4.1 Introduction 131
 4.2 Deformation of Axially Loaded Members 131
 4.3 Statically Indeterminate Structures 143
 4.4 Method of Superposition 147
 4.5 Thermal Deformation and Stress 148
 4.6 Stresses on Inclined Planes 156
 4.7 Saint-Venant’s Principle 159
 4.8 Stress Concentrations 160
 *4.9 Ductility and Design 164
 *4.10 Plastic Deformation and Residual Stress 165
Chapter 5 TORSION 174

5.1 Introduction 175
5.2 Deformation of a Circular Shaft 175
5.3 The Torsion Formula 178
5.4 Axial and Transverse Shear Stresses 180
5.5 Stresses on Inclined Planes 183
5.6 Angle of Twist 188
5.7 Statically Indeterminate Shafts 196
5.8 Design of Circular Shafts 202
5.9 Stress Concentrations 206
5.10 Inelastic Torsion of Circular Shafts 211
5.11 Torsion of Noncircular Solid Bars 215
5.12 Thin-Walled Hollow Members 218

Chapter Summary 228
References 230

Chapter 6 SHEAR AND MOMENT IN BEAMS 231

6.1 Introduction 232
6.2 Classification of Beams 232
6.3 Calculation of Beam Reactions 233
6.4 Shear Force and Bending Moment 238
6.5 Load, Shear, and Moment Relationships 243
6.6 Shear and Moment Diagrams 245
6.7 Discontinuity Functions 259
Chapter Summary 268
References 270

Chapter 7 STRESSES IN BEAMS 271

7.1 Introduction 272
PART A Pure Bending 273
7.2 Beam Deformation in Pure Bending 273
7.3 Assumptions of Beam Theory 275
7.4 Normal Strain in Beams 276
7.5 Normal Stress in Beams 280
7.6 Stress Concentrations in Bending 285
PART B Shear and Bending 292
7.7 Shear Stresses in Beams 292
7.8 Shear Stress Distribution in Rectangular Beams 297
7.9 Shear Stresses in Beams of Circular Cross Section 299
7.10 Shear Stress Distribution in Flanged Beams 300
7.11 Comparison of Shear and Bending Stresses 304
7.12 Design of Prismatic Beams 308
7.13 Design of Beams of Constant Strength 311

PART C Special Topics 321
7.14 Composite Beams 321
7.15 Reinforced Concrete Beams 325
7.16 Unsymmetric Bending 327
7.17 Shear Center 332
7.18 Inelastic Bending 334
7.19 Curved Beams 341
Chapter Summary 356
References 359

Chapter 8 TRANSFORMATION OF STRESS AND STRAIN 360

8.1 Introduction 361
8.2 Plane Stress 361
8.3 Principal Stresses 367
8.4 Maximum Shear Stress 368
8.5 Mohr’s Circle for Plane Stress 370
8.6 Absolute Maximum Shear Stress 383
8.7 Principal Stresses for a General State of Stress 384
8.8 Thin-Walled Pressure Vessels 385
8.9 Thick-Walled Pressure Vessels 393
8.10 Plane Strain 402
8.11 Mohr’s Circle for Plane Strain 405
8.12 Measurement of Strain; Strain Rosette 409
8.13 Relation Involving E, ν, and G 412
Chapter Summary 416
References 418

Chapter 9 COMBINED LOADINGS AND FAILURE CRITERIA 419

9.1 Introduction 420