Contents

1. Valence Bond Theory, Its History, Fundamentals, and Applications: A Primer
 Sason Shaik and Philippe C. Hiberty
 - Introduction ... 1
 - A Story of Valence Bond Theory, Its Rivalry with Molecular Orbital Theory, Its Demise, and Eventual Resurgence
 - Roots of VB Theory 2
 - Origins of MO Theory and the Roots of VB–MO Rivalry 5
 - The “Dance” of Two Theories: One Is Up, the Other Is Down 7
 - Are the Failures of VB Theory Real Ones? 11
 - Modern VB Theory: VB Theory Is Coming of Age 14
 - Basic VB Theory ... 16
 - Writing and Representing VB Wave Functions 16
 - The Relationship between MO and VB Wave Functions 22
 - Formalism Using the Exact Hamiltonian 24
 - Qualitative VB Theory 26
 - Some Simple Formulas for Elementary Interactions 29
 - Insights of Qualitative VB Theory 34
 - Are the “Failures” of VB Theory Real? 35
 - Can VB Theory Bring New Insight into Chemical Bonding? .. 42
 - VB Diagrams for Chemical Reactivity 44
 - VBSCD: A General Model for Electronic Delocalization and Its Comparison with the Pseudo-Jahn–Teller Model 56
 - What Is the Driving Force, σ or π, Responsible for the D_{6h} Geometry of Benzene? 57
 - VBSCD: The Twin-State Concept and Its Link to Photochemical Reactivity ... 60
 - The Spin Hamiltonian VB Theory 65
 - Theory .. 65
 - Applications .. 67
 - Ab Initio VB Methods .. 69
 - Orbital-Optimized Single-Configuration Methods 70
 - Orbital-Optimized Multiconfiguration VB Methods 75
 - Prospective .. 84

ix
Appendix 84

A.1 Expansion of MO Determinants in Terms of AO Determinants 84
A.2 Guidelines for VB Mixing 86
A.3 Computing Mono-Determinantal VB Wave Functions with Standard Ab Initio Programs 87

Acknowledgments 87
References 87

2. Modeling of Spin-Forbidden Reactions 101

Nikita Matsunaga and Shiro Koseki

Overview of Reactions Requiring Two States 101
Spin-Forbidden Reaction, Intersystem Crossing 103
Spin–Orbit Coupling as a Mechanism for Spin-Forbidden Reaction 105
General Considerations 105
Atomic Spin–Orbit Coupling 106
Molecular Spin–Orbit Coupling 107

Crossing Probability 110
Fermi Golden Rule 110
Landau–Zener Semiclassical Approximation 111

Methodologies for Obtaining Spin–Orbit Matrix Elements 111
Electron Spin in Nonrelativistic Quantum Mechanics 112
Klein–Gordon Equation 114
Dirac Equation 115
Foldy–Wouthuysen Transformation 117
Breit–Pauli Hamiltonian 121
Z_{eff} Method 121
Effective Core Potential-Based Method 123
Model Core Potential-Based Method 124
Douglas–Kroll Transformation 124

Potential Energy Surfaces 127
Minimum Energy Crossing-Point Location 128

Available Programs for Modeling Spin-Forbidden Reactions 131

Applications to Spin-Forbidden Reactions 132
Diatomic Molecules 132
Polyatomic Molecules 134
Phenyl Cation 137
Norborne 138
Conjugated Polymers 138
CH(2^2 \Pi) + N_2 \rightarrow HCN + N(4S) 139
Molecular Properties 140
Dynamical Aspects 141

Other Reactions 142
3. **Calculation of the Electronic Spectra of Large Molecules** 153
 Stefan Grimme

 - Introduction 153
 - Types of Electronic Spectra 155
 - Types of Excited States 158
 - Theory 162
 - Excitation Energies 162
 - Transition Moments 165
 - Vibrational Structure 171
 - Quantum Chemical Methods 177
 - Case Studies 188
 - Vertical Absorption Spectra 188
 - Circular Dichroism 200
 - Vibrational Structure 204
 - Summary and Outlook 210
 - Acknowledgments 211
 - References 211

4. **Simulating Chemical Waves and Patterns** 219
 Raymond Kapral

 - Introduction 219
 - Reaction–Diffusion Systems 221
 - Cellular Automata 227
 - Coupled Map Lattices 232
 - Mesoscopic Models 237
 - Summary 243
 - References 244

5. **Fuzzy Soft-Computing Methods and Their Applications in Chemistry** 249
 Costel Sărbu and Horia F. Pop

 - Introduction 249
 - Methods for Exploratory Data Analysis 250
 - Visualization of High-Dimensional Data 250
 - Clustering Methods 251
 - Projection Methods 252
 - Linear Projection Methods 252
 - Nonlinear Projection Methods 253
 - Artificial Neural Networks 254
Contents

Perceptron 254
Multilayer Nets: Backpropagation 256
Associative Memories: Hopfield Net 259
Self-Organizing Map 260
Properties 261
Mathematical Characterization 262
Relation between SOM and MDS 263
Multiple Views of the SOM 263
Other Architectures 263
Evolutionary Algorithms 264
Genetic Algorithms 265
Canonical GA 265
Evolution Strategies 266
Evolutionary Programming 267
Fuzzy Sets and Fuzzy Logic 268
Fuzzy Sets 269
Fuzzy Logic 271
Fuzzy Clustering 273
Fuzzy Regression 274
Fuzzy Principal Component Analysis (FPCA) 278
Fuzzy PCA (Optimizing the First Component) 278
Fuzzy PCA (Nonorthogonal Procedure) 279
Fuzzy PCA (Orthogonal) 280
Fuzzy Expert Systems (Fuzzy Controllers) 282
Hybrid Systems 284
Combinations of Fuzzy Systems and Neutral Networks 284
Fuzzy Genetic Algorithms 285
Neuro-Genetic Systems 286
Fuzzy Characterization and Classification of the Chemical Elements and Their Properties 286
Hierarchical Fuzzy Classification of Chemical Elements Based on Ten Physical Properties 288
Hierarchical Fuzzy Classification of Chemical Elements Based on Ten Physical, Chemical, and Structural Properties 293
Fuzzy Hierarchical Cross-Classification of Chemical Elements Based on Ten Physical Properties 297
Fuzzy Hierarchical Characteristics Clustering 304
Fuzzy Horizontal Characteristics Clustering 305
Characterization and Classification of Lanthanides and Their Properties by PCA and FPCA 307
Properties of Lanthanides Considered in This Study 308
Classical PCA 310
Fuzzy PCA 313
Miscellaneous Applications of FPCA 317
6. Development of Computational Models for Enzymes, Transporters, Channels, and Receptors Relevant to ADME/Tox

Sean Ekins and Peter W. Swaan

Introduction

ADME/Tox Modeling: An Expansive Vision

The Concerted Actions of Transport and Metabolism

Metabolism

Transporters

Approaches to Modeling Enzymes, Transporters, Channels, and Receptors

Classical QSAR

Pharmacophore Models

Homology Modeling

Transporter Modeling

Applications of Transporters

The Human Small Peptide Transporter, hPEPT1

The Apical Sodium-Dependent Bile Acid Transporter

P-Glycoprotein

Vitamin Transporters

Organic Cation Transporter

Organic Anion Transporters

Nucleoside Transporter

Breast Cancer Resistance Protein

Sodium Taurocholate Transporting Polypeptide

Enzymes

Cytochrome P450

Epoxide Hydrolase

Monoamine Oxidase

Flavin-Containing Monoxygenase

Sulfotransferases

Glucuronosyltransferases

Glutathione S-transferases

Channels
Human Ether-a-gogo Related Gene 376
Receptors 382
Pregnane X-Receptor 382
Constitutive Androstane Receptor 385
Future Developments 388
Acknowledgments 392
Abbreviations 393
References 393
Author Index 417
Subject Index 443