Contents

About the Authors ix
Acknowledgements xi
Preface xiii
List of Tables xv
List of Figures xix

1 Introduction 1

PART I MODELING FRAMEWORK 5

2 Default Models 7
 2.1 Introduction 7
 2.2 Default 7
 2.3 Default Models 8

3 Modeling Dependence with Copulas 13
 3.1 Introduction 13
 3.2 Copula 13
 3.3 Using Copulas in Practice and Factor Analysis 15

PART II SINGLE NAME CORPORATE CREDIT DERIVATIVES 19

4 Credit Default Swaps 21
 4.1 Introduction 21
 4.2 Credit Default Swap: A Description 22
 4.3 Modeling CDSs 23
 4.4 Calibrating the Survival Probability 24
 4.5 2008 Auction Results 26
 4.6 The Big Bang Protocol 27
5 Pricing Credit Spread Options: A 2-factor HW-BK Algorithm

5.1 Introduction
5.2 The Credit Event Process
5.3 Credit Spread Options
5.4 Hull–White and Black–Karazinsky Models
5.5 Results
5.6 Conclusion

6 Counterparty Risk and Credit Valuation Adjustment

6.1 Introduction
6.2 Valuation of the CVA
6.3 Monte Carlo Simulation for CVA on CDS
6.4 Semi-analytic Correlation Model
6.5 Numerical Results
6.6 CDS with Counterparty Risk
6.7 Counterparty Risk Mitigation
6.8 Conclusions

PART III MULTINAME CORPORATE CREDIT DERIVATIVES

7 Collateralized Debt Obligations

7.1 Introduction
7.2 A Brief Overview of CDOs
7.3 Cash versus Synthetic CDOs
7.4 Synthetic CDOs and Leverage
7.5 Concentration, Correlation and Diversification

8 Standardized Credit Indices

8.1 Introduction
8.2 Credit Default Swap Indices
8.3 Standardization
8.4 iTraxx, CDX and their Tranches
8.5 Theoretical Fair Spread of Indices

9 Pricing Synthetic CDO Tranches

9.1 Introduction
9.2 Generic 1-Factor Model
9.3 Implied Compound and Base Correlation

10 Historical Study of Lévy Base Correlation

10.1 Introduction
10.2 Historical Study
10.3 Base Correlation
10.4 Hedge Parameters
10.5 Conclusions
11 Base Expected Loss and Base Correlation Smile 77
11.1 Introduction 77
11.2 Base Correlation and Expected Loss: Intuition 78
11.3 Base Correlation and Interpolation 80
11.4 Base Expected Loss 80
11.5 Interpolation 82
11.6 Numerical Results 83
11.7 Conclusions 88

12 Base Correlation Mapping 89
12.1 Introduction 89
12.2 Correlation Mapping for Bespoke Portfolios 90
12.3 Numerical Results 92
12.4 Final Comments 97

13 Correlation from Collateral to Tranches 99
13.1 Introduction 99
13.2 Generic 1-Factor Model 99
13.3 Monte Carlo Simulation and Importance Sampling 100
13.4 Gaussian Copula Tranche Loss Correlations 101
13.5 Lévy Copula Tranche Loss Correlations 102
13.6 Marshall-Olkin Copula Tranche Loss Correlations 104
13.7 Conclusions 105

14 Cash Flow CDOs 107
14.1 Introduction 107
14.2 The Waterfall of a Cash Flow CDO 107
14.3 BET Methodology 108
14.4 Results 110
14.5 AIG and BET 119
14.6 Conclusions 120

15 Structured Credit Products: CPPI and CPDO 123
15.1 Introduction 123
15.2 Multivariate VG Modeling 123
15.3 Swaptions on Credit Indices 124
15.4 Model Calibration 125
15.5 CPPI 126
15.6 CPDO 129
15.7 Conclusion 132
PART IV ASSET BACKED SECURITIES 133

16 ABCDS and PAUG 135
 16.1 Introduction 135
 16.2 ABCDSs versus Corporate CDSs 135
 16.3 ABCDS Pay As You Go: PAUG 137
 16.4 Conclusion 138

17 One Credit Event Models for CDOs of ABS 139
 17.1 Introduction 139
 17.2 ABS Bond and ABCDS 139
 17.3 Single Name Sensitivity 141
 17.4 Multifactor Correlation Model 145
 17.5 Monte Carlo Simulation 145
 17.6 Results 146
 17.7 Conclusions 148

18 More Standardized Credit Indices: ABX, TABX, CMBX, LCDX, LevX 149
 18.1 Introduction 149
 18.2 ABX and TABX 149
 18.3 LevX and LCDX 153
 18.4 CMBX and ECMBX 154
 18.5 Indices as Indicators 154

19 1-factor Models for the ABS Correlation Market Pricing TABX Tranches 159
 19.1 Introduction 159
 19.2 Generic 1-factor Model 159
 19.3 Amortizing Bond and CDS 160
 19.4 A Simple Model for Amortization and Prepayment 161
 19.5 ABX.HE Credit Index 163
 19.6 Prepayment and Model Calibration 165
 19.7 Pricing Model Implications 168
 19.8 Conclusions 169

20 Bond Price Implied Spreads 171
 20.1 Introduction 171
 20.2 Bond Price Implied Spreads 171
 20.3 Numerical Results 174

PART V DYNAMIC CREDIT PORTFOLIO MANAGEMENT 177

21 Long Memory Processes and Benoit Mandelbrot 179
 21.1 Introduction 179
 21.2 Econophysics, Fat Tails and Brownian Motion 179
 21.3 Long-term Memory and the Nile River 181
 21.4 Capital Asset Pricing Model 181
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Securitization and the Credit Crunch</td>
<td>183</td>
</tr>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>183</td>
</tr>
<tr>
<td>22.2</td>
<td>Correlation and Mortgage-backed Securities</td>
<td>183</td>
</tr>
<tr>
<td>22.3</td>
<td>Securitization and Economic Growth</td>
<td>187</td>
</tr>
<tr>
<td>23</td>
<td>Dynamic Credit Portfolio Management</td>
<td>193</td>
</tr>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td>193</td>
</tr>
<tr>
<td>23.2</td>
<td>Regulatory Capital and Basel Formulas</td>
<td>194</td>
</tr>
<tr>
<td>23.3</td>
<td>Portfolio Credit Risk and Economic Capital</td>
<td>196</td>
</tr>
<tr>
<td>23.4</td>
<td>Securitization and CDO Models</td>
<td>200</td>
</tr>
<tr>
<td>23.5</td>
<td>CDO Pricing</td>
<td>204</td>
</tr>
<tr>
<td>23.6</td>
<td>Credit Portfolio Management and Correlation Mapping</td>
<td>205</td>
</tr>
<tr>
<td>23.7</td>
<td>Strategic Credit ECAP Management</td>
<td>208</td>
</tr>
<tr>
<td>24</td>
<td>Conclusion</td>
<td>217</td>
</tr>
<tr>
<td>Appendix A: Economic Capital Allocation Approaches</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Appendix B: Generalized Gauss Laguerre Quadrature</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>231</td>
</tr>
</tbody>
</table>