Contents

List of Contributors
Introduction
Guide to Methods

Part I Methods for Microfouling

Part Editor: Sergey Dobretsov

1 Microscopy of biofilms

Section 1 Traditional light and epifluorescent microscopy
Sergey Dobretsov and Raeid M.M. Abed

1.1 Introduction
1.2 Determination of bacterial abundance
1.3 Catalyzed reporter deposition fluorescent *in situ* hybridization (CARD-FISH)
1.4 Suggestions, with examples, for data analysis and presentation
 Acknowledgements
 References

Section 2 Confocal laser scanning microscopy
Koty Sharp

1.5 Introduction
1.6 Materials, equipment, and method
1.7 Image acquisition
1.8 Presentation
1.9 Troubleshooting hints and tips
1.10 Notes
 References

Section 3 Electron microscopy
Omar Skalli, Lou G. Boykins, and Lewis Coons

1.11 Introduction
1.12 Transmission electron microscopy (TEM)
1.13 Scanning electron microscopy (SEM)
 References

2 Traditional and bulk methods for biofilms

Section 1 Traditional microbiological methods
Hans-Uwe Dahms

2.1 Introduction
2.2 Enrichment culture, isolation of microbes
2.3 Counting methods
2.4 Troubleshooting hints and tips
 References
Section 2 Bulk methods

Sergey Dobretsov

2.5 Introduction 52
2.6 Measurement of biofilm thickness 53
2.7 Biofilm dry weight determination 54
2.8 Biofilm ATP content 55
2.9 Troubleshooting hints and tips 56
Acknowledgements 57
References 57

3 Biocide testing against microbes 58

Section 1 Testing biocides in solution: flow cytometry
for planktonic stages 59
Tristan Biggs, Tom Vance, and Glen Tarran

3.1 Introduction 59
3.2 Method introductions 60
3.3 Pros and cons 66
3.4 Materials and equipment 67
3.5 Methods 68
3.6 Troubleshooting hints and tips 70
3.7 Suggestions 71
Acknowledgements 72
References 72

Section 2 Biocide testing using single and multispecies biofilms 76
Torben Lund Skovhus

3.8 Introduction 76
3.9 Questions to answer when applying biocides 76
3.10 Laboratory methods for testing biocide effect 78
3.11 Field methods for testing biocide effect 81
3.12 Troubleshooting hints and tips 83
Acknowledgements 84
References 84

4 Molecular methods for biofilms 87

Section 1 Isolation of nucleic acids 88
Isabel Ferrera and Vanessa Balagué

4.1 Introduction 88
4.2 Materials 89
4.3 Isolation of DNA from a biofilm 90
4.4 Troubleshooting hints and tips 91
Acknowledgements 91
References 91

Section 2 PCR and DNA sequencing 93
Christian R. Voolstra, Manuel Aranda, and Till Bayer

4.5 PCR and DNA sequencing: General introduction 93
4.6 PCR 93
4.7 Microbial marker genes – 16S 94
4.8 DNA sequencing 95
4.9 454 16S amplicon pyrotag sequencing 95
4.10 Protocol 1: DNA extraction using the Qiagen DNeasy Plant Mini Kit 96
4.11 Protocol 2: Full-length 16S PCR using the Qiagen Multiplex Kit 98
4.12 Protocol 3: Analysis of full-length 16S genes 100
4.13 Protocol 4: 16S amplicon PCR for 454 sequencing using the Qiagen Multiplex Kit 102
4.14 Protocol 5: Trimming and filtering of 454 16S pyrotag sequencing 106
4.15 Protocol 6: Taxon-based analyses 108
4.16 Protocol 7: Phylogeny-based analyses 109
References 111

Section 3 Community comparison by genetic fingerprinting techniques 114
Raeid M.M. Abed and Sergey Dobretsov
4.17 Introduction 114
4.18 History and principles of the methods 115
4.19 Advantages and limitations of fingerprinting techniques 116
4.20 Materials and equipment 116
4.21 Suggestions for data analysis and presentation 121
4.22 Troubleshooting hints and tips 121
Acknowledgements 122
References 122

Section 4 Metagenomics 125
Sarah M. Owens, Jared Wilkening, Jennifer L. Fessler, and Jack A. Gilbert
4.23 Introduction and brief summary of methods 125
4.24 Overview of metagenomics methods 125
4.25 Method introduction 126
4.26 Overview of DNA handling for BAC library construction 127
4.27 BAC and Fosmid library construction 127
4.28 Library handling, archiving, and databasing 128
4.29 Facilitating library screening 128
4.30 Time frame considerations 129
4.31 Materials and equipment 129
4.32 Detailed methods: DNA handling and BAC library construction 130
4.33 Troubleshooting tips 131
4.34 Suggestions for data analysis 132
4.35 Suggestions for presentation of data 134
Acknowledgements 135
References 135

5 Methods for biofilm constituents and turnover 138
Section 1 Destructive and nondestructive methods 139
Arnaud Bridier, Florence Dubois-Brissonnet, and Romain Briandet
5.1 Introduction 139
5.2 Pros and cons of destructive and nondestructive M-LSM methods for biofilm analysis 140
5.3 Materials and equipment required for M-LSM 140
5.4 Example of questions than can be answered with the method 140
5.5 Suggestions for data analysis and presentation 148
References 149

Section 2 Biofilm formation and quorum sensing bioassays 153
Clayton E. Cox, William J. Zaragoza, Cory J. Krediet, and Max Teplitski
5.6 Introduction 153
5.7 Materials and equipment 157
5.8 Methods 157
Acknowledgements 165
References 165

6 Sampling and experiments with biofilms in the environment 168
Section 1 Field trials with biofilms 169
Jeremy C. Thomason
6.1 Introduction 169
6.2 Materials and equipment 170
6.3 Method 170
6.4 Troubleshooting hints and tips 171
6.5 Suggestions for data analysis and presentation 172
References 173

Section 2 Sampling from large structures such as ballast tanks 175
Robert L. Forsberg, Anne E. Meyer, and Robert E. Baier
6.6 Introduction 175
6.7 Materials and equipment 178
6.8 Troubleshooting hints and tips 180
6.9 Analytical methods 180
6.10 Suggestions for data analysis and presentation 182
References 182

Section 3 Sampling from living organisms 184
Christina A. Kellogg
6.11 Introduction 184
6.12 Historical background 185
6.13 Advantages and limitations of collection techniques 185
6.14 Protocols 186
6.15 Suggestions for data analysis 187
6.16 Troubleshooting hints and tips 187
Acknowledgment 188
References 188

Section 4 Optical methods in the field 190
Richard J. Murphy
6.17 Introduction 190
6.18 Examples of the use of optical methods 191
6.19 Spectral characteristics of biofilms 192
6.20 The use of chlorophyll-a as an index of biomass of biofilm 193
6.21 Multi-versus hyperspectral measurements (CIR imagery versus field spectrometry) 194
6.22 Calibration of data to reflectance 195
6.23 Suggestions for data analysis and presentation 195
6.24 Methods 197
6.25 Troubleshooting hints and tips 201
References 202

7 Laboratory experiments and cultures 204
Section 1 Static, constant depth and/or flow cells 205
Robert L. Forsberg, Anne E. Meyer, and Robert E. Baier
7.1 Introduction 205
7.2 Portable Biofouling Unit 207
7.3 Pros and cons of the method 207
7.4 Materials and equipment 208
7.5 Suggestions for data analysis 209
7.6 “Benchmark” bacteria and biofilm characterization 210
7.7 Troubleshooting hints and tips 212
References 212

Section 2 Mixed population fermentor
Jennifer Longyear
7.8 Introduction 214
7.9 Pros and cons 215
7.10 Fermentor 215
7.11 Mixed species microfouling culture 215
7.12 Utilizing the fermentor test section 218
7.13 Troubleshooting, hints and tips 218
References 219

Part II Methods for Macrofouling, Coatings and Biocides 221
Part Editors: Jeremy C. Thomason, David N. Williams.

8 Measuring larval availability, supply and behavior 223
Section 1 Larval availability and supply 224
Sarah Dudas and Joe Tyburczy
8.1 Introduction to measuring larval availability and supply 224
8.2 Measuring settlement and recruitment 235
References 238

Section 2 Larval behavior
Jeremy C. Thomason
8.3 Introduction 241
8.4 Method for tracking larvae 242
8.5 Troubleshooting hints and tips 245
8.6 Suggestions for data analysis and presentation 246
References 249

9 Assessing macrofouling 251
Section 1 Assessing fouling assemblages 252
João Canning-Clode and Heather Sugden
9.1 Introduction 252
9.2 A note on taxonomy 253
9.3 Field methods 253
11.8 Surface energy 330
Acknowledgements 330
References 331

12 Efficacy testing of biocides and biocidal coatings 332
Christine Bressy, Jean-François Briand, Chantal Compère, and Karine Réhel
12.1 Introduction 332
12.2 Laboratory assays for biocides 333
12.3 Field test methodology for biocidal coatings 337
References 343

13 Commercialization 346
Section 1 Processing a new marine biocide from innovation through regulatory approvals towards commercialization 347
Lena Lindblat
13.1 Introduction 347
13.2 Basics about the regulatory landscape from the academic perspective 349
13.3 Risk, risk assessment and risk management 349
13.4 Future directions 353
13.5 Conclusions 355
References 356

Section 2 From laboratory to ship: pragmatic development of fouling control coatings in industry 358
Richie Ramsden and Jennifer Longyear
13.6 Introduction 358
13.7 Laboratory coating development 358
13.8 Laboratory bioassay screening 359
13.9 Fitness for purpose (FFP) testing 360
13.10 Field antifouling performance testing 361
13.11 Test patch and vessel trials 363
13.12 Performance monitoring 364
13.13 Summary 365
References 365

Index 366