<table>
<thead>
<tr>
<th>Entry</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACVD, 170. See also Aerosol-assisted chemical vapor deposition (AACVD); Atmosphere-assisted CVD (AACVD) processing</td>
<td>160, 169–171</td>
</tr>
<tr>
<td>AACVD reactor design</td>
<td>169–171</td>
</tr>
<tr>
<td>AACVD studies, dual-source</td>
<td>175–178</td>
</tr>
<tr>
<td>ABAQUS software, for stress analysis</td>
<td>422–423</td>
</tr>
<tr>
<td>Active circuits</td>
<td>385–386</td>
</tr>
<tr>
<td>Active electronics, oxide dielectric films for</td>
<td>109–129</td>
</tr>
<tr>
<td>Actuators, macroelectronic</td>
<td>25</td>
</tr>
<tr>
<td>Adhesion. See also Thin-film adhesives in transfer printing, 415–417, 418 between viscoelastic and rigid elastic bodies</td>
<td>419</td>
</tr>
<tr>
<td>Aerosol-assisted chemical vapor deposition (AACVD), 160. See also AACVD entries</td>
<td>160, 169–171</td>
</tr>
<tr>
<td>Ag-In-Sb-Te, 77, 96</td>
<td>77, 96</td>
</tr>
<tr>
<td>Alcohol exchange reactions</td>
<td>37–38, 44</td>
</tr>
<tr>
<td>Alcohols, as solvents</td>
<td>40, 41</td>
</tr>
<tr>
<td>Alkoxide compounds</td>
<td>36–37</td>
</tr>
<tr>
<td>Alkyl indium thilates</td>
<td>161</td>
</tr>
<tr>
<td>Alloy films</td>
<td></td>
</tr>
<tr>
<td>SEM images of, 177–178</td>
<td></td>
</tr>
<tr>
<td>solid-solution, 209</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃, 112, 113</td>
<td>112, 113</td>
</tr>
<tr>
<td>AlPO (aluminophosphate) dielectrics, current processing temperatures for</td>
<td>124</td>
</tr>
<tr>
<td>AlPO dielectric surfaces</td>
<td>119</td>
</tr>
<tr>
<td>AlPO films</td>
<td>118, 121</td>
</tr>
<tr>
<td>AlPO gate insulators</td>
<td>121</td>
</tr>
<tr>
<td>AlPO thin-film dielectric</td>
<td>117–125</td>
</tr>
<tr>
<td>2024 Aluminum, ink-jet technology and</td>
<td>396</td>
</tr>
<tr>
<td>Aluminum hydroxide</td>
<td>118</td>
</tr>
<tr>
<td>Ammonia-complexed zinc precursor</td>
<td>270</td>
</tr>
<tr>
<td>Amorphous-based systems, future applications of</td>
<td>452</td>
</tr>
<tr>
<td>Amorphous films, 102, 115</td>
<td>102, 115</td>
</tr>
<tr>
<td>Amorphous materials, chemically derived</td>
<td>62</td>
</tr>
<tr>
<td>Amorphous silicon (a-Si), in macroelectronics, 407–408. See also a-Si film</td>
<td>407–408</td>
</tr>
<tr>
<td>Amorphous-to-crystalline transition, reversibility of</td>
<td>97, 99</td>
</tr>
<tr>
<td>Anchor structures</td>
<td>410</td>
</tr>
<tr>
<td>Anderson localization</td>
<td>325</td>
</tr>
<tr>
<td>AND gate</td>
<td>360–361</td>
</tr>
<tr>
<td>Anisotropic chemical etching, in macroelectronics, 409–412</td>
<td>409–412</td>
</tr>
<tr>
<td>Anisotropic wet chemical etching</td>
<td>410–411</td>
</tr>
<tr>
<td>Antennas, plastic</td>
<td>16</td>
</tr>
<tr>
<td>Antimony selenide (Sb₂Se₃) films, SILAR-grown, 255, 261. See also Ge–Sb–Se films</td>
<td>255, 261</td>
</tr>
<tr>
<td>Antimony sulfide (Sb₂S₃) films, SILAR-grown, 255, 261. See also Ks₅S₈ entries</td>
<td>255, 261</td>
</tr>
<tr>
<td>Antimony telluride films, ECALE-grown, 269</td>
<td>269</td>
</tr>
<tr>
<td>Aprotic solvents</td>
<td>39</td>
</tr>
<tr>
<td>Ar-annealing, 186–187</td>
<td></td>
</tr>
<tr>
<td>Architectural glazing</td>
<td>209</td>
</tr>
<tr>
<td>Area-multiplication, for macroelectronics, 415</td>
<td>415</td>
</tr>
</tbody>
</table>

Solution Processing of Inorganic Materials, edited by David B. Mitzi
Copyright © 2009 by John Wiley & Sons, Inc.
Argon, in gas physisorption, 290–291
Arrays
 carbon nanotube, 336–338
 of inorganic nanowires, 333–336
Artificial photosynthesis, next-generation applications of, 456, 462–465
As-deposited films, 216, 224, 225
As₂S₃, As₂Se₂ films, 103
da-Si film, 134–137. See also Amorphous silicon (a-Si)
Atmosphere-assisted CVD (AACVD) processing, 169. See also AACVD entries
Atmospheric Pressure Hot-Wall Reactor Parametric Study, 181–189
Atmospheric pressure processing, solution deposition versus, 449
Atomic force microscopy (AFM), 119, 242, 244
Atomic layer deposition (ALD), 121, 242
Auger analysis, 213, 214
Automation, of transfer printing, 425
Awareness, in technology diffusion, 399–400
Azeotropic solvents, 35

Band-gap energies, 180–181
Band gaps, 20, 209
 of ZnS, 203
BaCu₂S₃, 21
Barium oxide films, SILAR-grown, 246
Barium strontium titanate (BST) materials, future applications of, 453
Battery technology, printed, 386
Bendability, of flexible macroelectronics, 436
Benzocyclobutene (BCB)-containing siloxane polymers, with thin-film adhesives, 418
β-diketonates, 38
Bi-2212 films, 222–223
Binary oxide gate insulators, 112
Binary superlattices, 331–332
Binder, ink, 387
Binuclear complexes, 162
Biologically active materials, next-generation applications of, 455–456
Bismuth chalcogenide films, ECALE-grown, 269
Bismuth (Bi)-oxide superconductors, 218
Bismuth selenide (Bi₂Se₃) films, SILAR-grown, 255, 262
Bismuth sulfide (Bi₂S₃) film precursors, 255, 261–262
Bi–Sr–Ca–Cu–O, electrodeposition of, 222
Block copolymers, 285–286, 296 templates for, 296
Bond polarity, 43
Bottom-gate staggered device, 110
Bottom-gate TFT device characteristics, 117. See also Thin-film transistors (TFTs)
Bottom-gate TFTs, 136
Bottom-up assembly, 350, 363
 of nanophotonic devices, 364
 of three-dimensional device structures, 370
Bottom-up manufacturing, 350
“Boundary layer” model, 176
BSCCO precursor films, 222
Buckling, of flexible macroelectronics, 436–441
Cadmium chalcogenide thin films, ECALE-grown, 268–269
Cadmium selenide (CdSe) films, 322
 SILAR-grown, 258
electron mobility in, 321
Cadmium sulfide (CdS), 189. See also CdS entries
deposition of, 200–203
 nanoparticles, 321
Cadmium sulfide films
 ECALE-grown, 269
 ILGAR-grown, 265–267
 SILAR-grown, 253–254, 257–258
Cadmium sulfide nanorods, in future solution-based process applications, 450, 451
Cadmium telluride (CdTe), thin-film, 5
Cadmium telluride films, 322
 SILAR-grown, 258
Capillary rheometry, 59
Carbon nanotube films, 340
Carbon nanotube networks/arrays, applications using, 336–338
Carbon nanotubes (CNTs), 18–19, 314, 318, 336–338
bulk synthesis of, 423
electronic properties of, 351
in transfer printing, 423–424
transistors, 336–338
Carboxylates, 38
Carrier films
single-walled carbon nanotubes and, 424
in transfer printing, 423–424
Carrier mobility
in nanowire materials, 353
in semiconductor nanowires, 333
Carrier multiplication, efficient, 329
Catalysis, next-generation, 462–465
Cathodic electrodeposition, 211–212
Cation precursor, 241
CBD Bi2S3, 210
CBD Bi5Se3, 210
CBD cadmium sulfide (CdS) films, impurity content in, 202. See also Chemical bath deposition (CBD)
CBD CdS, 200–203. See also Cadmium sulfide (CdS)
CBD (Cd,Zn)S, 207, 209. See also Cd1-xZn,xS deposition
CBD CIS films, 210
CBD Cu3S films, 210
CBD MnS, 210
CBD Inx(O,H,S)y, 209
CBD In(OH)3:Zn2+, 209
CBD MoSe2 semiconductor thin films, 210
CBD PbS, 210
CBD processes, 201–202
investigation of, 209–210
CBD Sb2S3, 210
CBD SnS, 210
CBD TiO2, 210
CBD ZnO, 209, 210
CBD ZnS antireflection coating, 209
CBD ZnSe, 210
CBD ZnS(O,OH), 204–206
CdO, 21
Cd2SnO4, 21 Cd1-xZn,xS deposition, 206–209. See also Cadmium entries
CdS–PbS films, SILAR-grown, 254, 260–261. See also Cadmium sulfide entries
CdS precipitation, 202
CdS/ZnS multilayer thin films, SILAR-grown, 258–260
Cd1-xZn,xS solid solution films, SILAR-grown, 258, 259
Ceramic microstructures, high-quality, 65
Ceramic processing, for oxide materials, 452
Cerium oxide (CeO2, ceria) films, 247
electrodeposition of, 223–225
epitaxial, 224
SILAR-grown, 251–252
(Ce,Sm)O2 films, SILAR-grown, 251–252
Cetyltrimethylammonium bromide (CTAB), 285
Chalcogenide films
oxygen contamination of, 242
SILAR-grown, 252–263
Chalcogenide ions, 80
Chalcogenides, poorly soluble, 92
Chalcogenide semiconductors
hydrazine precursor route and, 82–102
solution processing of, 77–108
Chalcogen–R′ bonds, cleavage of, 164
Chalcopryte absorbers, 158
Chalcopryte (I–III–VI2) materials, 160. See also I–III–VI2 powders
Chalcopryte phase, 179, 184–185
Chalcopryte solar cells, 183–184
Chalcopryte thin-film materials, 157–158
Charge transport, 301, 325
efficient, 326
in nanocrystal solids, 328
nanocrystal surface electronic structure and, 327–328
Charging energy, 325
Chelate processes, 41, 45–47, 48, 49
flowchart for, 46, 47
Chemical bath deposition (CBD), 189, 199, 200–210, 239. See also CBD entries
future applications of, 455
Chemical etching, 394
in macroelectronics, 409–412
Chemical solution deposition (CSD), 33–76. See also CSD entries
achievements in, 68
characterization methods used in, 59–60
methods for, 48
processing stages in, 34
starting reagents in, 36–39
structural evolution in, 41, 53–65
substrate surface preparation in, 34–36
Chemical surface preparation, 35–36
Chemical vapor deposition (CVD), 78, 131, 159, 315. See also CVD synthesis
Chemical vapor deposition processing, spray or atmosphere-assisted, 169–181
CIGS absorbers, 92–94, 211. See also Copper indium gallium diselenide entries
CIGS-based solar cells, 92–94, 203, 204, 207, 209, 210
CIGS/CdS devices, 207, 208
CIGS/CdZnS devices, 207, 208
CIGS films, 92–94, 212–213
CIGS precursor films, 215
CIGSSe, 158
Circuits
computational, 360–361
future advances in, 11
high-speed integrated Si NW-TFT, 368–369
 lightweight, 1–2
CIS films, electrodeposition of, 214–215. See also Copper indium sulfide (CuInS₂, CIS)
CIS PV devices, potential of, 192–193
CIS solar cells, 200
 fabrication and testing of, 189–191
Citrate method, 49
Cluster-catalyzed vapor-liquid-solid growth, 351
Clusters, 313
Cobalt manganese oxide films, 247
Cold-wall reactor, 170, 178
Colloidal nanocrystals, 318, 321–322
for field-effect devices, 329
Colloidal synthesis, 329
solution-phase, 315
Columnar grain structure, 179
Commercial grain structure, 179
Commercial macroelectronic technology, 2–5
Commercialization, 398
Complementary metal-oxide semiconductor (CMOS) circuits, 333
in heterogeneous three-dimensional integration, 432, 435
Complementary metal-oxide semiconductor technology, 24, 89
Compositionally graded structures, 125
Compound wafers, etching of, 412
Computational circuits, nanoscale, 360–361
Computer-aided design, 19
Computer-controlled SILAR equipment, 242, 243
Condensation chemistry, 115–116
Conducting inks, 387
Conducting matrix, 305
Conductive polymer inks, 396
Contact materials
 future applications of, 454
next-generation, 457
Contact printing, 384, 389–393
Continuous polycrystalline films, sintering metal and semiconductor nanoparticles into, 319–323
Controlled reaction centers, for artificial photosynthesis, 462–463
Convection, growth velocity and, 208–209
Cooperative self-assembly (CSA) mechanism, 284
Copolymerization method, 147–150
Copper 2-ethylhexoate, 395
Copper(I) (Cu₂S) films SILAR-grown, 254, 261
Copper(I) oxide (Cu₂O) thin films sequential-deposition-grown, 270 SILAR-grown, 246, 247, 263
Copper(II) oxide (CuO), 250
Copper(II) sulfide (CuS) films, SILAR-grown, 254, 261
Copper dithiocarbamates, 161
Copper–gallium (Cu–Ga) electrodeposition, 215. See also Cu(Ga$_{1-x}$In$_x$)Se$_2$ films
Copper/indium (Cu/In) ratios, 160–161. See also Cu(Ga$_{1-x}$In$_x$)Se$_2$ films
Copper indium gallium diselenide (CIGS). See also CIGS entries electrodeposition of, 211–215 electroless deposition of, 215–218 mini-modules, 200 Copper–indium–gallium–selenium (Cu–In–Ga–Se) codeposition, 215, 216 Copper indium selenide (CuInSe$_2$) films, 92–93 SILAR-grown, 263 Copper indium selenide semiconductors, ultrasonic spray deposition of, 450, 451 Copper indium sulfide (CuInS$_2$, CIS), 161–162. See also CIS entries; CuInS$_2$ entries; GRC thin-film CuInS$_2$ solar cell architecture shallow donors and acceptors for, 188 Copper indium sulfide absorber layer, ILGAR-grown, 267–268 Copper indium sulfide films, 183, 184, 185 growth on molybdenum, 171–172 SILAR-grown, 255, 262 Copper indium telluride (CuInTe$_2$) devices, 92 Copper indium telluride films, 89–92 Copper iodide (CuI) films, SILAR-grown, 263–264 Copper nanoparticles, for nonlinear optics, 461–462 Copper-on-indium (Cu-on-In) antisite, 181 Copper-rich CuInS$_2$ films, 179 Copper sulfate films, SILAR-grown, 250 Copper sulfide (Cu$_2$S) precursor, 94 Copper telluride (Cu$_2$Te), 91 Copper-to-indium (Cu-to-In) ratios, 182–183, 184 Core/shell nanowires, 354 Cost objectives, 26 Cost per square centimeter, for macroelectronic applications, 9 Coulomb charging energy, of nanocrystal array, 324 Coupled electron/ion charge transfer, 302 CPS polymerization, 133–134, 148–149 Critical micellar concentration (cmc), 285 Critical thickness, 55 Crossed nanowire devices, 358–360 Crossed NW FETs (cNW-FETs), 359, 360. See also Nanowire field-effect transistors (NW-FETs) Cross-fabrication, of solar cells, 190 Crystalline films, 91–92 cycling stability of, 301 deposition of, 102 Crystalline inorganic metals, characteristics of, 313 Crystalline MoS$_2$ films, 102. See also Molybdenum sulfide (MoS$_2$) Crystallite precursors, 47 Crystalline semiconductors, 17 Crystalline silicon materials, 4 Crystalline tin chalcogenide films, 84 Crystallinity, in electronic applications, 294 Crystallization, 55, 56, 298 of a-Si film, 136–137 mesostructure stability during, 295 Crystallization behavior, 66–67 Crystallization temperatures, 57 CSD methods, use and study of, 66. See also Chemical solution deposition (CSD) CSD processing, role of solvents in, 40 CuAlO$_2$, 21 CuGaO$_2$, 21 Cu(Ga$_{1-x}$In$_x$)Se$_2$ films, 92–94. See also Copper indium telluride (CuInTe$_2$) films CuGaS$_2$ films. See also Copper–gallium (Cu–Ga) electrodeposition growth and characterization of, 172–175 SEM images of, 174 CuInS$_2$ film growth, impact of reactor design on, 178–181. See also Copper indium sulfide (CuInS$_2$, CIS) CuInS$_2$ thin films, growth process of, 191 CuInTe$_2$ films, 89–92 CuInX electrodeposition, 215 Cu$_2$O, SILAR-grown, 250
INDEX

Cured films, 118
Current density, 218
Current drive, 122
Current saturation, 85
Current-voltage output characteristic, solar-cell, 190
CuSCN films, SILAR-grown, 264
CVD synthesis, 318. See also Chemical vapor deposition (CVD)
Cyclopentasilane, 132–134, 147–148, 383

Deep-level transient spectroscopy (DLTS), 216
Defects
 dip coating, 52
 spin coating, 51
Delamination, in transfer printing, 419–420
Delayed humidity treatment (DHT), 296
Delayed rapid crystallization (DRC) mechanism, 295
Dendritic microstructure, 179
Densification, 54–57
Density-gradient ultracentrifugation, 338
Deposition, thick-film, 103
Deposition approaches, future applications of, 455
Deposition potential, 216
Deposition temperature, variation of, 182–184
Deposition zone temperature, 182–184 variation of, 191–192
Device mobility, 18
Dewetting, 97
Dielectric breakdown, 121
Dielectric deposition, 14, 109
Dielectric inks, 387
Dielectrics, future applications of, 453
Dielectrophoresis, 333, 338
Differential amplifiers, in integrated circuits, 431–432
Differential crystallization, 125
Differential scanning calorimetry (DSC), low-temperature, 165–166
Diffuse-reflectance FAIR spectroscopy, 205
Diffusion, growth velocity and, 208–209
Diffusion-limited growth, 179
β-Diketonates, 38
Dilated precursor solutions, 286
Dimensional reduction solution processing of chalcogenide semiconductors via, 77–81 steps in, 80–81
Dimethylformamide (DMF), 40
Dimethylsulfoxide (DMSO), 87
Diodes, in logic circuits, 360
Dip-coating, 51–52
 future applications of, 455
Dip-ILGAR, 264–265
Dip pens, future applications of, 455
Direct band-gap semiconductor nanowires, optical studies on, 353–354
Directed self-assembly technique, 14
Directional deposition, in wafer etching, 410–411
Direct laser transfer, 17
“Disordered” mesopore structures, 305
Display manufacturing capability, 5–8
Disposable electronic applications, 5
Dissolution, 35
Dissolution agent, 40
Distributed light sources, 23
Donor–acceptor charge transfer, 322
Donor–acceptor pair (DAP) recombination, 187
Dopant atoms, activating, 151–152
Doped silicon films electrical resistivity of, 150 forming, 147–153
Doping, of zinc oxide, 248
Dot gain/loss, 389
Drago–Wayland approximation, 164
Dry stamping approach, 370–371
Dry transfer, single-walled carbon nanotubes and, 424
Dry transfer printing methods/techniques, in macroelectronics, 408–409, 414, 415
Dual-source AACVD studies, 175–178.
 See also Aerosol-assisted chemical vapor deposition (AACVD)
Dye-sensitized solar cells (DSSCs) based on deposited TiO₂, 305–306 mesoporous films in, 303–306 solution-synthesized semiconductor nanowires in, 335–336
INDEX

ECALE technique. See Electrochemical atomic layer epitaxy (ECALE) deposition
ED Bi-2212 films, 222–223. See also Electrodeposition (ED)
EDS measurements, 179. See also Energy dispersive spectroscopy (EDS)
EDS spectra, 167
EDX analysis, 267
EISA-manufactured layers, in electronic applications, 302. See also Evaporation-induced self-assembly (EISA)
EISA-prepared films, high porosity of, 300
EISA process, 284–289
DSSCs prepared by, 304–305
mesoporous structures in, 286–287
postdeposition treatment in, 288–289
use of nanoparticles in, 298
EISA-processed thin films, precursors for, 287
EISA processing
of crystalline mesoporous metal oxides, 295
parameters for, 299
Elastic recoil detection analysis (ERDA), 261
Elastomeric (PDMS) supports, for flexible macroelectronics, 436–439
Elastomer stamps, transfer printing techniques using, 412–426
Electrically functional inks, 387–389
Electrical properties, of a solution-processed film, 136
Electric-field-directed alignment, 333, 334
Electrochemical activity, enhanced, 300
Electrochemical atomic layer deposition (EC-ALD), 268
Electrochemical atomic layer epitaxy (ECALE) deposition, xiv, 268–269
films grown by, 266
Electrochromic response times, 301
Electrodeposition (ED), 199. See also Electrodeposition (ED)
Energy sources, printed, 385
Engineered nanomaterials, as soluble precursors, 313–347
Epitaxial CdS thin films, 203
Epitaxial ceria films, 224
Epitaxial growth, for three-dimensional integration, 432
Epoxies, with thin-film adhesives, 418
Etching
in macroelectronics, 409–412
in three-dimensional integration, 432–434
Ethanolamine, 87
Ether sulfate, 202
Ethylene glycol, 257
Europium oxide films, 247
Evaporation-induced self-assembly (EISA), xiv, 283–312. See also EISA entries
electronic applications of, 299–302
films processed by, 298–299
mesoporous crystalline metal oxide films via, 294–299
Evolved gas analysis (EGA), 166
Excitation intensity, 187
Experiments, statistically designed, 61–62
Extended (distributed) light sources, 23
Extended X-ray absorption fine structure (EXAFS), 59, 256
Fabrication methods/technologies, 9, 14–15
new/novel, 10, 157
Faraday’s constant, 212
Feature size, 380
Ferric oxide films, SILAR-grown, 246
Field-effect devices, colloidal nanocrystals for, 329
Field-effect mobilities, 327, 329
Field-effect transistors (FETs), 326, 351 nanoscale, 358–360. See also Thin-film transistor (TFT)
Film characteristics, precursor properties affecting, 58
Film composition measurements, 160–161
Film deposition methods, summary of, 50
Film formation, 53–55
using dimensional reduction, 81
Film formation behavior, 49–53
Film processing behavior
control over, 61
role of precursor structure in, 42–43
Film processing characteristics, 41
Film roughness, 178–179
Films
high-quality, 113–114
of inorganic nanowires, 333–336
quenching, 97, 98
Film surface roughness, 96–97
Film thickness, 50–51, 85, 87–88, 93, 96, 125, 241–242
controlling, 84
EISA and, 299
Finite-element analysis (FEA), of stress effects and fracture, 422–423
Flat panel display (FPD) industry, 2–4, 5
Flexible displays, 460
Flexible electronics
applications of, 459–460
future applications of, 454
inorganic single-crystalline materials for, 409–412
Flexible substrates, 449
Flexible thin-film transistors, using μs-Si MOSFETs, 426–429, 430
Flexographic printing, 389–393
Flow-assisted alignment, 333
Fluidic flow-directed assembly method, 354–356
Fluidic self-assembly, for macroelectronics, 413–414
Fluorite crystal structure, 224
Fluorosilyl moieties, 193
Focused ion beam milling (FIBM), 53
Force modulation (FM), 244
Fourier transform infrared (FTIR), 166, 202. See also FTIR spectra
Four-phase film and device optimization study, 182
Four-point probe method, 175
Fracture
causes of, 421–422
in transfer printing, 421–423
Free energy, impact of physical factors on, 64
FTIR spectra, of CBD ZnS(O,OH), 205. See also Fourier transform infrared (FTIR)

Functional devices, assembling, xv

Functional inks, 387–389. See also Ink entries
 for ink jet printing, 394–395
 for lithographic printing, 393

GaAs wafers, etching of, 412. See also Gallium arsenide entries

GaAs wires, 412

Gadolinium zirconium oxide (Gd₂Zr₂O₇), electrodeposition of, 225–229

Gallium arsenide (GaAs), microstructured, 17. See also GaAs entries

Gallium arsenide ribbons, in flexible macroelectronics, 436–437, 438–439

Gallium arsenide transistors
 in heterogeneous three-dimensional integration, 432, 433, 435, 436
 in integrated circuits, 429, 431, 432
 in three-dimensional integration, 432

Gallium nitride (GaN) nanowires (NWs), 363
 transistors, in heterogeneous three-dimensional integration, 433, 434

Gallium zinc oxide (GZO) films, 225–229

Gas chromatography, 59

Gas physisorption, 290–292

Gas-sensor applications
 nanowire films for, 336
 SILAR-grown ZnO films for, 250

Gate-bias-induced carrier trapping, 121–122

Gate dielectric materials, selecting, 109–113

Gate dielectrics, 18–19, 116
 solution-processed, 145
 performance of, 121

Gate leakage currents, 116

Gel permeation chromatogram (GPC), 133–134

Germanium sulfide (GeS₂) film deposition, amorphous, 102

Ge–Sb–Se films, 98
Ge–Sb–Te, 77, 96

Glancing angle X-ray diffraction (GAXRD), 161, 179, 203

Glenn Research Center (GRC), cell fabrication at, 189

Glenn Research Center studies, 157, 158, 160–161

Gold deposition, single-walled carbon nanotubes and, 424

Gold 2-ethylhexoate, 395

Gold nanoparticle suspension, 397

Graetzel cell, 303, 305

Grain structure, 81, 94

Graphic arts contact printing technologies, 389, 390, 391

Graphite susceptor, 170

Gravure printing, 389–393

Grazing incidence small-angle X-ray scattering (2D-GISAXS), 289, 292, 325

“Greener” processing, 449

H₂X decomposition products, 83

Hafnium oxide sulfate (HafSO₄), 114–117. See also HafSO₄ entries

Hafnium oxide sulfate thin-film dielectrics, 114–117

Hafnium salt–sulfuric acid reactions, 114–115

HafSO₄ films, 125. See also Hafnium oxide sulfate (HafSO₄)

HafSO₄:La matrix, 116

HafSO₄/ZrSO₄ nanolaminate, 126

HfO₂, 112–114

Heterobinuclear complexes, 162

Heteroepitaxial nucleation, 65

Heterogeneous integration (3D-HGI), on plastic, 432–436

Heterogeneous integration strategy, for macroelectronics, 412–413

Heterogeneous nucleation, 63–64

High electron mobility transistors (HEMTs), in heterogeneous three-dimensional integration, 433, 434

High-performance dielectrics, 117

High-performance TFTs, 16. See also Thin-film transistors (TFTs)
High-pressure carbon monoxide
decomposition (HiPco), 318
High-quality oxide dielectrics, solution
processing of, 126
High-resolution transmission
electron microscopic measurement,
221
High-resolution transmission
electron microscopy (HRTEM),
203, 251
High-speed integrated Si NW-TFT
circuits, 368–369. See also Thin-film
transistors (TFTs)
High-temperature superconductor
(HTS), 218, 225
Homoeptaxial nucleation, 65
Homogeneous nucleation, 63
Hot probe measurement, 187
Hot-wall reactor, 169
Hot-Wall Reactor Parametric Study,
181–189
Hot-wall reactors, 178
Hybrid devices. See also Organic–
inorganic hybrids
next-generation, 457
for nonlinear optics, 461
Hybrid processes, 45–47
Hybrid structure, 364–366
Hydrazine
in In2Se3 films, 87–89
in SnSe2−xSx films, 82–87
Hydrazine-based film deposition, for
PCM films, 96
Hydrazine precursor route, 82–102
Hydrazine treatment, 327, 329, 332
Hydrogenated cyclic silanes, 132–133
Hydrogenated polysilanes, 133
oligomeric and polymeric, 132
Hydrogenated silicon compounds, 132
Hydrogen bonding, in transfer printing,
417
Hydrogen peroxide, as an oxygen
precursor, 250
Hydrolysis sensitivity, 44
Hydrophilic solvents, 35
Hydrophilic surfaces, 84, 284, 285
Hydrophobic solvents, 35
Hysteresis, 121, 122
IEEE 802.X standards, 399
I–III–VI2 powders, preparing from
SSPs, 167–169. See also
Chalcopyrite (I–III–VI2) materials
ILGAR cycle, 265. See also Ion layer gas
reaction (ILGAR)
Impurities
in metallo-organic inks, 395
in thin-film transistors, 397, 398
Incident-photon-to-current-efficiency
(IPCE), 304
Indium(III) sulfide, 267
Indium arsenide (InAs) films, ECALE-
grown, 269
Indium/gallium (In/Ga) chalcogenides,
159
Indium gallium zinc oxide (IGZO)
channel, 124
Indium phosphide (InP), in nonlinear
optics, 461
Indium phosphide nanowires, 354
Indium-rich films, 179
Indium-rich secondary phase, 191
Indium selenide (In2Se3) films,
87–89
ECALE-grown, 269
Indium selenide precursor films, 87
Indium sulfide (In2S3) films, SILAR-
grown, 255, 262
Indium telluride (In2Te3), 91, 100–102
Indium tin oxide (ITO), 21
mesoporous, 302, 305
Indium–tin–oxide matrix, for nonlinear
optics, 461–462
Indium zinc gallium oxide (InZnGaO),
future applications of, 452
Indium zinc oxide (InZnO), future
applications of, 452
Inductively coupled plasma (ICP)
analysis, 207
Inductively coupled plasma reactive ion
etching (ICPRIE), 411
Infrared (IR) detectors, in
heterogeneous three-dimensional
integration, 432, 435–436.
See also Fourier transform infrared
(FAIR)
Ink deposition, 389
Ink-jet-fabricated TFT, 141. See also Thin-film transistors (TFTs)
Ink-jet-printed silicon film, TFT fabrication using, 140–142
Ink jet printing, 393–394
functional inks for, 394–395
future applications of, 454, 455, 459
liquid silicon material and, 140–142
Inks. See also Functional inks
electrically functional, 387–389
future applications of, 454, 455
next-generation applications of, 455
shelf life, 388
testing, 388–389
Inorganic building blocks, 287–288
Inorganic films
fabricating, 65–66
nanomaterials as soluble precursors for, 313–347
nanoparticles as soluble building blocks for, 318–332
solution-based processing of, xiii
Inorganic inks, aqueous-based, 127
Inorganic materials systems, printable, 381–384
Inorganic nanomaterials, synthesis of, 315–318
Inorganic nanoparticle materials, cost of, 382–383
Inorganic nanoparticles/nanowires, 339
Inorganic nanostructures, in next-generation applications, 459–460
Inorganic nanowires, films and arrays of, 333–336
Inorganic polymers, in nonlinear optics, 461
Inorganic precursors, nature of, 287
Inorganic semiconductors, 10
Inorganic single-crystalline materials, for flexible/stretchable electronics, 407–447
In$_2$Se$_3$ films, 87–89
Institute for Energy Conversion (IEC), 190
Insulating films, 109
Insulators, in field-effect thin-film transistors, 109–110
Insulator–semiconductor interface, 111, 119
Integrated circuit (IC) technologies, 2
Integrated circuits (ICs), 379
flexible, 9
on plastic, 429–436
Integrated device arrays, 356
Integrated high-performance insulators, 109
Interfacial bonding, in transfer printing, 416
International Technology Roadmap for Semiconductors (ITRS), 380
Inverters, 369, 371
Ion layer gas reaction (ILGAR), xiv, 264–268
materials grown by, 265–268
Joint Committee on Powder Diffraction Standards (JCPDS), 167
Junctions, crossed, 358
K$_2$Se, 78–79
K$_2$Sn$_3$Se$_5$, 79
K$_6$Sn$_2$Se$_7$, 78–79, 83
K$_8$SnSe$_4$, 78–79
K$_8$Sn$_2$Se$_8$, 78–79
K$_{10}$Sn$_2$Se$_{17}$, 78–79
Kerr effect, 460
Kinetic control, 288
Kinetic effects, in transfer printing, 419–420
Kipping method, 132
KLE (KL–PEO) block copolymer templates, 296–299, 302
Kroger’s mechanism, 212
Krypton sorption, 290–291
KSb$_3$S$_8$ films, 94–98
KSb$_3$S$_8$ precursor solution, 96
Laminated structures, 125
Laminates, deposition of, 126
Langmuir–Blodgett (LB) technique-assisted NW assembly, 357–358
Lanthanum fluoride (LaF$_3$) films, SILAR-grown, 264
Lanthanum neodymium oxide films, 247
Lanthanum oxide films, 247
Large-area devices, in future solution-based process applications, 452, 454
Large-area electronics, 2, 5, 7, 8, 407–409 functionality for, 8–9
Large-area systems, 449
Laser ablation process, 318
Laser-annealed amorphous silicon, in macroelectronics, 408
Laser crystallization, 136–138, 141
Laser diode (LD), 362
Laser intensity, electric resistivity and, 152
Lateral force microscopy (LFM), 244
Lead acetate solution, as a precursor, 260
Lead chalcogenide nanocrystal solids, 325
Lead oxide films, 247
Lead selenide (PbSe) film, SILAR-grown, 254, 261
Lead selenide nanowires, 317
Lead selenide nanocrystal assemblies, 325
Lead selenide nanocrystal FETs, 328
Lead selenide nanocrystal solids, 326
Lead selenide nanowires, 335
Lead sulfide (PbS) ECALE-deposition, 269
Lead sulfide film morphology, 244
Lead sulfide films, SILAR-grown, 254, 260–261
Lead telluride (PbTe) nanowires, 335
Lead telluride nanocrystals, 332
Lead telluride nanocrystal solids, 326
Lead–tin (PbSn) solder, printing with, 396
Lead–titanium (Pb–Ti) precursors, 57–59
Lead–zirconium (Pb–Zr) precursors, 57
Lead zirconate titanate (PZT), 42, 45, 65, 67
Leakage currents, 111, 121, 145, 146
density of, 120
Lewis acid–base interaction, 164
Ligand molecules, 321
Ligands, 36
embedded organic, 113–114
Light, in nonlinear media, 460–462
Light conversion efficiencies, 305
Light-emitting diodes (LEDs), 22
nanoscale, 362–365
Lighting, solid-state, 22–23
LiNbO₃, 57
Liquid crystal display (LCD) backlights, 23
Liquid-crystal templating (LCT) mechanism, 284
Liquid precursor, novel, 132
Liquid silicon materials, 131–155
forming silicon films from, 134–137
forming SiO₂ films from, 142–144
printing technology and, 140–142
Lithographic printing, 389–393
Lithography, high-resolution, 17
Lock-and-key approach, for transfer printing machines, 426
Logic gates, nanoscale, 360–361
Low-field leakage, 121
Low-leakage insulators, 121
Low-oxygen films, 139–140
Low-temperature poly-Si (LTPS), TFT, 136, 139. See also LTPS entries
Low-temperature poly-Si devices, 15
Low-temperature precursor reservoir, 169
Low-weight surfactants, 285
LTPS fabrication, using solution-processed SiO₂ films, 144–147. See also Low-temperature poly-Si (LTPS)
LTPS TFTs, 144–147. See also Thin-film transistors (TFTs)
transfer characteristics of, 145, 146
Machines, for transfer printing, 425–426
Macroelectronics, xiii, 2–5, 78, 407–409
application challenges in, 11–19
heterogeneous three-dimensional integration for, 432–436
high-performance, 373
inorganic single-crystalline materials for, 409–412
on plastic, 429–436
potential of, 5–8
power sources, sensors, and actuators for, 24–26
on rubber, 436–441
thin-film transistors for, 9
transfer printing techniques for, 412–426
two-dimensional integration for, 429–432
versus microelectronics, 26
Macroelectronics technology, challenge for, 8
Magnetic field dependencies, 220
Manganese(IV) oxide films, SILAR-grown, 246, 247, 252
Mass market acceptance, 400
Mass spectrometry (MS), 166
Mass-to-charge ratio (m/z), 167
Materials
combining with device structures, 27
for flexible/stretchable electronics, 407–447
in future solution-based process applications, 450–454
Material Safety Data Sheet (MSDS), 40
Materials savings, from spray coating, 52
Matrix stabilization, 288
Mechanical stage, for transfer printing, 425
MEIS analysis, 92
Melting temperature, particle size and, 320
Mesopores, sorption/condensation in, 290
Mesoporous crystalline metal oxide films, via evaporation-induced self-assembly, 294–299
Mesoporous films
in dye-sensitized solar cells, 303–306
in electronic applications, 299–302
with insulating framework, 299–301
with semiconducting framework, 301–302
Mesoporous frameworks, thermal stability of, 296
Mesoporous inorganic materials, 285
Mesoporous layers, adsorbance of, 302
Mesoporous metal oxides, precursors for, 287
Mesoporous silica layers, permselective properties of, 300
Mesoporous structures, in the EISA process, 286–287
Mesoporous TiO$_2$ films, 291, 303–304
Mesoporous titania layers, 302
Mesoscale waveguides, 461
Mesostructure
determination of, 292
orientation of, 289
stability of, 295
Metal alkoxide–acetic acid reaction, 46
Metal alkoxide compounds, 36–38
Metal–anion (M–X) framework, dismantling, 78–81
Metal β-diketonates, 38–39
Metal carboxylates, 38–39
Metal chalcogenide films, 77
phase-change materials and, 94–95
Metal chalcogenides, solution-processed, 103
Metal chalcogenide semiconductors, 132
Metal chalcogenide systems, alternative, 98–102
Metal deposition, in future solution-based process applications, 454
Metal–insulator–metal (MIM) capacitors, 116, 120
Metal–insulator–semiconductor (MIS) devices, 120, 121
Metallic films, SILAR-grown, 263–264
Metallic nanotubes, controllable breakdown of, 337
Metallic nanowires, alignment of, 333
Metallic tubes, 18–19
Metallo-organic compounds, 36–37
Metallo-organic decomposition (MOD) solution synthesis, 41, 47–48
Metallo-organic inks, 394–395
Metal nanoparticles
sintering into continuous polycrystalline films, 319–323
synthesis of, 315–316
Metal organic CVD (MOCVD), 160, 162, 169
Metal-organic precursors, 46
Metal organic reagents, 39
Metal oxide films
evaporation-induced self-assembly for, 283–312
mesoporous crystalline, 294–299
Metal oxides, template-directed crystallization of, 299
Metal oxide semiconductor field-effect transistors (MOSFETs), 426–429, 430. See also μ-Si MOSFETs and Field-effect transistors (FETs) in integrated circuits, 429, 431 stretchable, 439–440 Metal polychalcogenide species, developing, 80 Metal selenide films, 212 Metal–semiconductor–metal (MSM) IR detectors, in heterogeneous three-dimensional integration, 435–436 Metal tellurides, 98–101 Metamaterials, 331, 339 2-Methoxyethanol, 40 Micelle templating, 285 Microcontact printing, 17, 52–53 Microelectromechanical systems (MEMS), 25, 397 Microelectronics, 1–2 macroelectronics versus, 409 Microelectronics industry, printing and, 384–386 Micromanipulators, for macroelectronics, 413 Micro/nanoscale elements, for macroelectronics, 413–414, 415 Micro/nanoscale objects, approaches using, 17 Microphototonics, silicon, 23 Microstructured film deposition, xiv–xv Miller indices, 173 Minority-carrier traps, 216 Mobility, 12–15, 78, 327, 353, 381–382 of organic versus inorganic semiconductors, 381 of silicon film, 139 of TFT, 145, 147 Modified EISA process, 304 Modified SILAR system, 258 Molecular-beam epitaxy (MBE), 203 Molecular dynamics, 66 Molecular precursors, 294 Molten metals, printing with, 396 Molybdenum (Mo), CuInS₂ growth on, 171–172 Molybdenum foil substrates, 171 Molybdenum sulfide (MoS₂), 102–103 Molybdenum selenide (MoS) films, SILAR-grown, 262 Monochalcogenide systems, 80 Monodisperse colloidal nanocrystals, 323 Moore’s Law, 1, 380 Mosaic dispersions, 224, 226, 227 Mother wafers, etching of, 409–410 Mott insulator, 325 Mud cracking, 115 Multicrystalline silicon materials, 4 Multilayer deposition, 103 Multilayer quasi-3D processing, for macroelectronics, 415 Multinuclear nuclear magnetic resonance (NMR) data, 59, 164 Multiple-component oxides, 112–113 Multiple dip-coating, 304 Multiple exciton generation (MEG), next-generation, 456–457 μ-Si-x GaAs MESFETs, in integrated circuits, 429, 431, 432 μ-Si-NHEMTs, in heterogeneous three-dimensional integration, 433, 434 μ-Si electronics, on rubber, 436–441 μ-Si MOSFETs, 426–429, 430. See also Metal oxide semiconductor field-effect transistors (MOSFETs); Single-crystalline silicon structures in heterogeneous three-dimensional integration, 433, 434, 435 in integrated circuits, 429, 431 M–X–M linkages, 80, 82 Nafion, 338 NAND gates, 432 Nanobelts (nanoribbons), 316 Nanocasting, 284 Nanoclusters, 314 Nanocrystal assemblies, electronic properties of, 324–325 Nanocrystal bilayer devices, photovoltaic conversion in, 322 Nanocrystalline particles, colloidal synthesis of, 315 Nanocrystalline silicon, 23 Nanocrystals, 313–314 ability to fuse, 320–321
precise assembly of, 339
semiconductor, 316
Nanocrystal solar cell devices, optimized, 323
Nanocrystal solids, 325
conductance of, 326
Nanocrystal TFT, 327. See also Thin-film transistors (TFTs)
Nodevice arrays, 355
Nanodielectrics, solution-deposited, self-assembled, 18
Nano-electronic noses, 336
Nano-enabled ink, 387, 388
Nano-entities, xv
NanoFET–nanoLED array, 364. See also Light-emitting diodes (LEDs)
Nanofiber arrays, next-generation applications of, 456
Nanolaminate fabrication, 121
NanoLEDs, 363–364. See also Light-emitting diodes (LEDs)
Nanomaterials
in heterogeneous three-dimensional integration, 432–436
in macroelectronics, 408
as soluble precursors, 313–347
Nanometer-scale wire structures, 351
Nanoparticle arrays, binary, 331
Nanoparticle assemblies
collective phenomena in, 339
electronic materials based on, 323–330
long-range translational ordering in, 324
multicomponent, 331–332
Nanoparticle clusters, metallic, 397
Nanoparticle precursors, in future solution-based process applications, 450
Nanoparticle routes, for silicon solution processing, 452
Nanoparticles, 179. See also Nanoscale particles
direct deposition of, 383–384
in EISA process, 297–298
in next-generation applications, 459–460
in periodic cubic crystalline structures, 297–298
sintering into continuous polycrystalline films, 319–323
as soluble building blocks for inorganic films, 318–332
Nanoparticle superlattices, 324
Nano-pen deposition, future applications of, 455
Nanopillars, 457, 458
Nanopods, next-generation applications of, 456
Nanoporous arrays, for 3D structures, 462, 463, 464
Nanoporous structure, for nonlinear optics, 461
Nanoribbons, next-generation applications of, 456
Nanorod arrays, for 3D structures, 462–464
Nanoscale building blocks, 350
functional structures assembled from, 349–377
synthesis and properties of, 350–354
Nanoscale elements, for macroelectronics, 413–414, 415
Nanoscale inks, electronically functional inorganic, 380–381, 396–397
Nanoscale integration, next-generation applications of, 455–456
Nanoscale logic gates/computational circuits, 360–361
Nanoscale particles, materials systems based on, 379. See also Nanoparticles
Nanoscale periodicity, 330
Nanoscale film deposition, xiv–xv
Nanoscale oxide materials, future applications of, 452–453
Nanoscale structures, 315
exploring, 350
Nanotechnology, 379
Nanotechnology value chain, 381
Nanotube arrays, for 3D structures, 462, 463, 464
Nanotube/nanowire-based devices, 25
Nanotubes, 314
orienting and positioning, 19
Nanowire assembly, parallel and orthogonal, 334
Nanowire building blocks, xv
Nanowire devices, crossed, 358–360
Nanowire dye-sensitized solar cell, 335–336
Nanowire field-effect transistors (NW-FETs), 352–355, 371. See also Crossed NW FETs (cNW-FETs)
Nanowire films, for gas-sensing applications, 336
Nanowire materials, physical properties of, 354
Nanowire morphology, controlling, 318
Nanowire photonics, integration with silicon electronics, 365
Nanowires (NWs), 314. See also NW entries
alignment of, 354–355
electronic and optical properties of, 353
electronic properties of, 352
hierarchical assembly of, 354–358
inorganic, 333–336
printing onto a low-temperature substrate, 18
solution-phase synthesis of, 316–318
Nanowire thin-film electronics, 366–372
National Aeronautics and Space Administration (NASA), Glenn Research Center studies, 157, 158, 160–161
National Renewable Energy Laboratory (NREL), 205
Nernst equation, 211
Net carrier concentration, 216–217
Networks, carbon nanotube, 336–338
Nitrile method, 49
Nitrogen, in gas physisorption, 290–291
NO2 sensitivity, 336
Noble metal nanoparticles, synthesis of, 316
Noncontact printing, 384–385, 393–394
Nonlinear optics, next-generation, 460–462
Nonspecific surface interactions, in transfer printing, 416–417, 418
Non-stoichiometric compounds, 104
Nontechnical forums, 399–400
NOR gate, 360–361
n-transport, 329
n-type silicon films, 153
Nuclear magnetic resonance (NMR), optically polarized xenon, 289
Nuclear magnetic resonance spectroscopy, 60
Nucleation, 63–64, 208
Nucleation rate, 315
Nucleation sites in CBD processes, 201
NW arrays, 355, 357–358. See also Nanowire entries
NW building blocks bottom-up assembly of, 372
future of, 372–373
NW LED, 362. See also Light-emitting diodes (LEDs)
NW materials, 362
NW structures, crossed, 355, 358
NW synthesis, controlling, 373
NW thin films, 373
NW thin-film transistors (NW-TFTs), 366–368, 372
electrical transport studies on, 367
inverter circuit, 369
ring oscillator, 369
Ohm’s Law, 394
Oligo(ethyleneoxide), 285
Omega scans, 225, 226, 228
I–III–VI2 powders, preparing from SSPs, 167–169. See also Chalcopyrite (I–III–VI2) materials
One-dimensional (1D) nanostructures, 351
Optically polarized xenon nuclear magnetic resonance (NMR), 289
Optical media, rewritable, 95
Optical studies, on direct band-gap semiconductor nanowires, 353–354
Optics, nonlinear, 460–462
Optoelectronic circuits, integrated, 363–364
Optoelectronic devices, nanoscale, 372
Optoelectronics, 19–24
nanowire, 362–366
Organic-based displays, 459
Organic electronics advantages of, 382–383
cost of, 382
environmental impact of, 383
Organic–inorganic hybrids
next-generation, 457–460
for nonlinear optics, 461
Organic ligands, 113–114
Organic light-emitting diodes (OLEDs), 23
ink jet printing and, 393
Organic materials, next-generation applications of, 455–456
Organic materials systems, printable, 381–384
Organic photovoltaic (OPV) devices, in next-generation applications, 458–459
Organic polymers
ink jet as a means to print, 393
in nonlinear optics, 461
Organic semiconducting materials, 381
Organic semiconductor devices (OFETs), 13
Organic thin-film transistors (TFTs), performance of, 131–132. See also Thin-film transistors (TFTs)
OR gate, 360–361
Oriented attachment synthesis, 317–318
Oxide dielectric films, 109–129
Oxide films
SILAR-grown, 244–252
solution-derived, 127
Oxide platforms, for artificial photosynthesis, 463
Oxides
in future solution-based process applications, 452–453
mixed-metal, multiple-component, 112
Oxide superconductors, electrodeposition of, 218–223
Oxide TFTs, 124. See also Thin-film transistors (TFTs)
high-performance, 123
Oxide thin films, depositing from solution, 113
Packing symmetries, 323–324
Paper, electronic, 459–460
Parametric study approach, 181–182
Passive circuits, 385
Patterned porosity, 283
Patterning porosity, xv, 27, 127
for solution deposition, 398–401
using ink-jet printing, 153
PbTiO$_3$, 57, 59
PbZrO$_3$, 57
PDMS stamps. See also Polydimethylsiloxane (PDMS)
single-walled carbon nanotubes and, 424
in transfer printing, 416–417, 419, 425
Pechini method, 49
Performance
macroelectronic TFT, 13
objectives of, 26
Permselective electrode layers, 300
Perovskite film, 65
Phase-change materials (PCMs), 77, 94–98
Phase-change memory, nonvolatile, 95
Phase transformation, thermodynamic and kinetic factors associated with, 62–65
Phi scans, 228
pH measurements, 60
Phosphorus, as a dopant source, 147–148
Phosphorus-doped liquid silicon material, 147–153
Photoinduced charge-transfer processes, 305
Photoluminescence (PL), 362. See also PL entries
Photoluminescence properties, of nanowires, 354
Photoluminescence spectra, 187
Photoluminescence studies, 185–189
Photosynthesis
next-generation applications of, 456, 462–465
simulating, 463, 465
Photovoltaic (PV) conversion, 322
Photovoltaic devices, 19–21, 158, 204, 207, 208–210, 213
EISA-derived films used in, 304 fabrication of, 216
in future solution-based process applications, 450–451
organic–inorganic hybrids in, 457–458
third generation, 450
Photovoltaic modules, worldwide production volume of, 4
Photovoltaics industry, 4–5
Photovoltaic substances, future applications of, 452–453, 454
Physical cleaning, 35
Physical vapor deposition (PVD), 200 for oxide materials, 452
solution deposition versus, 449
for 3D structures, 462
PIB–b–PEO block copolymer templates, 296
Pick-and-place tools, macroelectronics and, 412–413
Planar optical waveguides (PWGs), 456
Plasma cleaning, 35
Plasma-enhanced chemical vapor deposition (PECVD), 136, 137, 138
for flexible thin-film transistors, 426–427
Poly(dimethylsiloxane) (PDMS), 52
in flexible macroelectronics, 436–439
in macroelectronics, 408–409, 414
with thin-film adhesives, 417, 418, 419
in transfer printing, 416–417
in transfer printing machines, 425
Poly(ethylene-co-butylene) (KL), 285
Polyethylene glycol, 202
Polyethyleneimine coating, 338
Poly(ethyleneoxide) (PE), 285
Polyethyleneterephthalate (PET), for macroelectronics, 414. See also PET sheet
Polyimide (PI), with thin-film adhesives, 418
Polyimide substrate for flexible thin-film transistors, 426–427
in integrated circuits, 429–431
Polymeric-based solution processing, 33
Polymeric CSD processes, 40
Polymers in next-generation applications, 458
in nonlinear optics, 461
Poly(propyleneoxide) (PP), 285
Polysilane, oxidation of, 142
Polysilane films, annealed, 143–144
Polystyrene (PS), 285
Polyurethanes (PUs) for macroelectronics, 414
with thin-film adhesives, 418
Poly(vinylpyridine), 285
Porous metal oxide films, evaporation-induced self-assembly for, 283–312
Porous thin films, 283
Positron annihilation lifetime spectroscopy (PALS), 289–290
Postdeposition film annealing, 182, 184–185
Post-polymerization addition method, 147, 149–150
Potassium. See K₄Sn₂Se₆; KSb₅S₈ entries
Powder X-ray diffraction (XRD), 101
Powder XRD analysis, 166, 168. See also X-ray diffraction (XRD)
Power generation, renewable forms of, xiii
Power sources, macroelectronic, 24–25
Power technologies, 157
Precursor aging, 287
Precursor coating, in solution-phase film deposition, 113
Precursor components, self-assembly of, 288
Precursor concentration, variation of, 184
Precursor design, 192–193
Precursor films
electrodeposited, 213, 222
hydrazinium, 84
morphology of, 213
Precursor films, in future solution-based process applications, 451–452
Precursor modification reactions, 46
Precursors. See also Diluted precursor solutions; Single-source precursors (SSPs); Soluble precursors aqueous inorganic, 114–125
bismuth sulfide film, 255, 261–262
cation, 241
copper sulfide, 94
crystalline, 47
doped, 148
future applications of, 455
hydrazinium, 87
lead acetate as, 260
lead-titanium, 57–59
lead-zirconium, 57
for mesoporous metal oxides, 287
for metal chalcogenide film deposition, 80
metal-organic, 46
molecular, 294
next-generation applications of, 455
for oxide materials, 452
single-source, xiv
soluble, xiv–xv
tetra-nuclear TiO_2, 66
ZnTe, 99
Precursor selection, in chemical solution deposition, 36
Precursor solutions controlling the characteristics of, 42
K_{2}S_{x}, 96
preparation and characteristics of, 41–49
Precursor structure effects of, 57–65
impact on film formation behavior, 49, 54
Precursor studies, single-source, 161–169
Prestrained elastomeric (PDMS) supports, for flexible macroelectronics, 436–437
Printable elements effect of stress and fracture on, 421–423
in macroelectronics, 408
with thin-film adhesives, 419
Printable materials systems, inorganic versus organic, 381–384
Printable precursor materials, conversion of, 383
Printed electroluminescent (EL) displays, 385
Printed electroluminescent products, 386
Printed electronics, 380, 389
Printed electronics-based products, commercializing, 385
“Printed electronics” manufacturing line, 10–11
Printed electronics value chain, 386
Printed organic light-emitting diode (OLED/PLED) technologies, 385, 386. See also Organic light-emitting diodes (OLEDs)
Printed passive circuitry, 386
Printed transistors, structure of, 397–398
Printed wiring boards (PWBs), 384, 386
Print head, 425
Printing, xv
direct additive processing via, 127
microelectronics industry and, 384–386
in three-dimensional integration, 432–434
of 3D structures, 462, 464
Printing-of-silicon process, 383
Printing techniques, for flexible/stretchable electronics, 407–447
Printing technologies, 9–10, 384, 389–397
liquid silicon material and, 140–142
rheological properties and film thickness for, 391
Printing tools, for transfer printing, 425–426
Production, shift in the means of, 11
Profilometry, 59
Protic solvents, 39
p-Si nanowire (NW) thin-film transistors, 366–368
p-Si NWs, 363
P-SPICE simulation, 436
p-transport, 329
p-type conduction, 181
p-type doping, 152–153
p-type TCO materials, 22
Pulsed aerosol injection system, 170
Pulsed-laser-deposited film, 222
Pulsed laser deposition (PLD), 315
Pulsed laser irradiation, 151–152
Pyridine, 40
PZT thin films, structural evolution for, 67
Quality control/assurance, in technology diffusion, 400
Quantum dot crystals, 324
Quantum dots (QDs), 350–351
in future solution-based process applications, 450
organic–inorganic hybrids in, 457–458
Quantum dot structures, next-generation, 456–457
Quantum efficiency, 20
Quasi-3D processing, for macroelectronics, 415
Quench cooling, 165
Quenching, 97, 98
Radar systems, 16
Radiofrequency (RF) measurements, of MOSFETs and MESFETs, 429, 430
Radio frequency identification (RFID) tags, 2, 386, 392
Radiofrequency interference (RFI), 21
Raman scattering, 460
Raman spectroscopy, 137, 138, 150
Rapid coagulation, 208
Rapid thermal annealing (RTA), 56, 150–151
Rapid thermal processing (RTP), 56
Rate-dependent adhesion effect, in transfer printing, 419–420
Reaction centers, for artificial photosynthesis, 462–463
Reaction chemistry, 60
Reactions, chelate, 46
Reactions, sol-gel, 41–45
Reactive ion etching (RIE), for flexible thin-film transistors, 426–427
Reactor design, impact on CuInS₂ film growth, 178–181
Reactor parameters, manipulating, 182
Reagents, selecting, 41
Rectennas (rectifying antennas), 457
Reflection high-energy electron diffraction (RHEED), 203
Refractive index, 56
 Resistivity, laser intensity and, 152
 Resistivity-crystallinity relationship, 150–151
Reversibility
of the amorphous-to-crystalline transition, 97, 99
of phase-change materials, 95–96
RF TFTs, 15–17. See also Thin-film transistors (TFTs)
Rheological properties, of ink, 387
Ring oscillators, 369
Rollable electronic paper, 460
Roll test, of adhesion, 419
Roll-to-roll processing, 9, 10
Root-mean-squared (rms) roughness, 119
Rotogravure printing, 393
Rubber, μ-Si electronics on, 436–441
Rutherford backscattering spectroscopy (RBS), 59, 162, 202, 256
Sacrificial thin film, 423
S-annealing, 186–187, 189
Saturation-regime mobility, 92
SAXS in symmetric reflection (SRSAXS), 289, 294
Scandium fluoride (ScF₃) films, SILAR-grown, 264
Scanning electron microscopy (SEM), 115, 213
Scherrer formula, 224, 225
Schlenk-line, 44–45
Schottky diode growth, 172
Screen printing, 389–392
Secondary ion mass spectrometry (SIMS), 59, 135, 149, 202
Selective transfer, for macroelectronics, 415
Self-assembled films, 289–294
gas physisorption and, 290–292
positrion annihilation lifetime spectroscopy and, 289–290
small-angle x-ray scattering and, 292–294
Self-assembled monolayers (SAMs), 52–53
Self-assembly, 126
evaporation-induced, 283–312
of precursor components, 288
Self-assembly in fluids, for
macroelectronics, 413–414
Self-organized structures, for nonlinear optics, 462
Semiconducting inks, 387
inorganic, 382
Semiconducting metal oxides, 301
Semiconductor electronics, advances in, 349
Semiconductor elements, fabricating, 408–409
Semiconductor industry, 2–3, 379–380
Semiconductor inks, 380
Semiconductor manufacturing, 349–350
Semiconductor materials, solution processing for, 131–132
Semiconductor nanocrystals
quantum tunability of, 318
synthesis of, 316
Semiconductor nanomaterials, in
macroelectronics, 408
Semiconductor nanoparticles, sintering into continuous polycrystalline films, 319–323
Semiconductor nanowire devices, 18
Semiconductor nanowire thin-film electronics, 367
Semiconductor nanowires, 333, 351–354, 373
synthesis of, 316–318
Semiconductor NW building blocks, 352
Semiconductors
fabrication technologies for, 390
in future solution-based process applications, 450–452
inorganic, 313
integration into single systems, 409
Semiconductor wafers, etching of, 409–412
Sensing effect, of single-wall carbon nanotube films, 338
Sensors, macroelectronic, 25
Sequential solution-phase deposition techniques, 270
Shape complementarity, with thin-film adhesives, 417, 418
Sheet resistance, 175
Shockley–Hall–Read (SHR) lifetime, 217–218
Shockley–Quiesser efficiency limit, 456
Short-chain alcohols, 54
Si capillary gas chromatogram, 43
Si–H bonds, 136
Silane-based liquid precursor, 132
Silanol groups, in transfer printing, 415–416
SILAR cycle, thin-film growth during, 240–241. See also Successive ionic layer adsorption and reaction (SILAR) technique
SILAR deposition equipment, 241, 242–243
SILAR-grown multilayer structures, 258–260
SILAR-grown ZnS thin films, 253, 256–257
thermal oxidation of, 248–250
SILAR process, 239–240
factors affecting thin-film growth in, 241
Silica, sol-gel reactions for, 42
Silica channels, electrical conductivity of, 301
Silica films, in electrochemical applications, 300. See also Silicon dioxide (SiO2) films
Silicon (Si). See also Amorphous silicon (a-Si); μs-Si entries; p-Si entries; Si entries in macroelectronics, 407–409
solution processing of, 451–452
Silicon-based integrated emitters, 23–24
Silicon-based polymers, exploring, 153
Silicon beams, fractures in, 421–422
Silicon devices, 11
elements of, 153
Silicon dioxide (SiO₂) films, mesoporous, 293. See also Silica films; SiO₂ films
Silicon feedstock, 4
Silicon film(s), 132
doped, 147–153
forming from liquid silicon materials, 134–137
inkjet printed, 140–142
TFT fabrication using, 137–140
thick, 142
Silicon nanocrystals, 23
Silicon NW-TFT circuits, high-speed integrated, 368–369. See also Thin-film transistors (TFTs)
Silicon-on-insulator (SOI) substrate, 364, 365
Silicon-on-insulator MOSFET, 367. See also Metal oxide semiconductor field-effect transistors (MOSFETs)
Silicon-on-insulator wafers, 410
Silicon quantum dot wafers, 140
Silicon structures, in transfer printing, 417, 418
Silicon wafers, comparison with glass substrates, 3
Silicon wire/ribbons, 410–411, 412
Silver films, SILAR-grown, 263
Silver manganese films, 247
Silver neodecanoate, 395
Silver telluride (Ag₂Te) nanocrystals, 332
SIMS analysis, 149
Simulation techniques, 66
Single-crystalline materials, for flexible/stretchable electronics, 407–447
Single-crystalline silicon structures. See also μs-Si entries
in flexible macroelectronics, 436–437, 438–439
in transfer printing, 417, 418
Single-crystalline silicon wire/ribbons, 410–411, 412
Single-source precursors (SSPs), 159–160
chemical synthesis of, 163–164
molecular design of, 162–163
for multiterminal semiconductors, 192
preparing I–III–VI₂ powders from, 167–169
thermal analysis and characterization of, 164–167
Single-source precursor studies, 161–169
Single-wall carbon nanotube (SWNT) based TFTs, 18, 351. See also Thin-film transistors (TFTs)
in heterogeneous three-dimensional integration, 432, 433–435
Single-wall carbon nanotube films, 338
Single-walled carbon nanotubes (SWCNs), in transfer printing, 423–424
Sintered nanocrystalline solar cells, 323
SiO₂ films, 112, 113. See also Silica films; Silicon dioxide (SiO₂) films
forming from liquid silicon materials, 142–144
LTPS fabrication using, 144–147
SiO₂ gate insulator, 88
Si–Si bonds, 136
Size-dependent melting-point depression, 320
Small-angle X-ray scattering (SAXS), 59, 292–294
SnO₂, 21
SnSe₂₋ₓSₓ films, 82–87. See also Stannic sulphide (SnS₂) films
Sodium lauryl sulphate, 285
Soft epitaxy, 299
Soft lithography, for macroelectronics, 414
Solar cell applications, 92–94
Solar-cell concepts, new, 305
Solar cell device, CBD CdS as a junction layer for, 200
Solar cells
best parameters obtained from, 192
characterization of, 190–191
colloidal semiconductor nanocrystals in, 321–322
dye-sensitized, 303–306
high-efficiency, 204
nanocrystal, 339–340
next-generation, 456–457
novel types of, 303
sintered nanocrystalline, 323
thin-film, 157–159
Solar energy, using photovoltaics, 4
Sol-gel deposition, 113
Sol-gel processes, 40, 41–45, 48, 113
Sol-gel solution synthesis flow diagram, 45
Solid electrolyte, 224
Solid-oxide fuel-cell (SOFC) applications, 224
Solid-state lighting, 22–23
Solubility product, 201–202
Solubilizing species, alternative, 102–103
Soluble precursors, engineered nanomaterials as, 313–347
Solution-based deposition, on large areas, 20
Solution-based precursors, for oxide materials, 452
Solution-based processes, 103 nanoscale building blocks and, 313 vacuum-based processes versus, 449–450
Solution characteristics, impact on film formation behavior, 49
Solution concentration/viscosity, 54–55
Solution-deposited, self-assembled nanodielectrics, 18
Solution-deposited semiconductors, future applications for, 450–452
Solution growth technology, advantages of, 199
Solution–liquid–solid (SLS) growth, 317
Solution molarity, film thickness and, 178
Solution-phase colloidal synthesis, 315
Solution preparation, in the CSD process, 36
Solution-processable materials, in macroelectronics, 408
Solution-processed dielectrics, future applications of, 453
Solution-processed silicon film, TFT fabrication using, 137–140
Solution-processed SiO₂ films, LTPS fabrication using, 144–147
Solution processing, 131 application challenges in, 19–24, 24–26 importance of, 8–11 Solutions, high-quality films from, 113–114
Solvation characteristics, 39
Solvent-induced self-assembly technique, 304
Solvent quality, 54
Solvents, 35, 39–40 characteristics of, 39, 40 selecting, 41
Solvent systems, chemical interactions across, 122–123
Solvent vapor pressure, 54
Space exploration, power technologies for, 157–158
Spectroscopic ellipsometry porosimetry (EP), 291–292
Spectroscopy, positron annihilation lifetime, 289–290
Sphalerite phase, 179
Spin coating, xiv, 49–51, 52 advantages and disadvantages of, 51 for film deposition, 81
Spray coating, 52
Spray CVD, xiv, 169–171, 193 using SSPs, 192
Spray CVD deposition studies, 172–173
Spray CVD process, binuclear complexes in, 162
Spray deposition, future applications of, 455
Spray-ILGAR, 264–265, 267
Spray pyrolysis, xiv
Sputtering techniques, 211
SrCu₂O₃, 21
Stabilizing agents, in colloidal synthesis, 315
Stamp-based printing methods, for macroelectronics, 414–415, 415–417, 417–419
Stamping processes, 52–53
Stamping techniques, future applications of, 454, 455
Standards, in technology diffusion, 399
Stannic oxide films, SILAR-grown, 246, 247
Stannic sulfide (SnSₓ) films, SILAR-grown, 255, 262. See also SnSeₓ–ₓSₓ films
Starting reagents, in chemical solution deposition, 36–39
INDEX

Stranski–Krastanov film growth mode, 244
Stress concentration and fracture, in transfer printing, 421–423
Stretchability
of flexible macroelectronics, 436–441
two-dimensional, 440–441
Stretchable electronics, transfer printing techniques for, 412–426
Striations, 54
Structural defects, 323
Structural evolution, 41
Structural health monitor systems, 431–432
Structural relaxation, 56
Structured dielectrics, laminated approach to, 125
Structure shrinkage problem, 297–298
Substrates, low-temperature, 15
Substrate separation, in batch-produced CBD CdS, 202
Substrate surface, for successful film deposition, 81
Substrate surface preparation, in chemical solution deposition, 34–36
Successive ionic layer adsorption and reaction (SILAR) technique, xiv, 210, 239–282. See also SILAR entries
advantages and disadvantages of, 241–242
basic principles of, 240–244
chalcogenide films grown by, 252–263
materials grown by, 244–264
mechanism of film growth in, 243–244
metallic films grown by, 263–264
oxide films grown by, 244–252
Sulfato ligands, 114
Superconductive transition temperature, 220–221
Superconductivity (SC) behavior, 218
Superlattices, 331–332
Supply chain development, roadmapping for, 400
Surface acoustic waves (SAWS), 59, 289, 291
Surface chemistry, in transfer printing, 415–417, 418
Surface contaminants, cleaning mechanisms for, 35
Surface energies, 64–65
Surface interactions, in transfer printing, 416–417, 418
Surface tension, of ink, 387
Surfactants, influence on deposited films, 202–203
Susceptor location, variation of, 184
System-on-a-chip applications, macroelectronics and, 412
Ta2O5, 112
TBSBCCO-1223 film, 221
TBSBCCO films, 219–222
TDS analysis, 136. See also Thermal desorption spectroscopy (TDS)
Technical forums, 399
Technological progress, xiii
Technology diffusion, 398–400
Templated films, self-assembled, 306
Templated mesoporous TiO2, for DSSCs, 305
Templating approaches, 284–285
ternary chalcopyrite systems, 89–93
ternary polycrystalline compounds, 159
ternary single-source precursors, thermal data for, 165
Tetraethylorthosilicate (TEOS), 37, 38
precursor solutions with, 43–44
Tetrahydrafuran (THF), 40
Tetramethoxysilane (TMOS), 42
tetra-nuclear TiO2 precursor, crystalline structure of, 66
tetrazoles, 321
TFT circuit fabrication, 9. See also Thin-film transistors (TFTs)
TGA-evolved gas analysis (EGA), 166–167
Thallium (Tl)-oxide-based superconductors, 218. See also Tl–Bi–Sr–Ba–Ca–Cu–O
Thallium oxide (Tl2O3) films, SILAR-grown, 247, 252
Thermal analysis, 59, 164–167
Thermal conductivity, 332
Thermal decomposition, 134
Thermal desorption spectroscopy (TDS), 135–136
Thermal oxidation conditions, high-temperature, 142
Thermal spray deposition, 14
Thermal stability, 120
of mesoporous frameworks, 296
 Thermodynamic driving forces, 62, 63
 Thermodynamic sinks, 59
Thermoelectric devices, nanowire-based, 318
Thermogravimetric analysis (TGA), 84, 88, 100, 164–165
Thick film deposition, 103
Thick films, 101. See also Film thickness
Thick silicon film, 142
Thin-film adhesives, in transfer printing, 417–419
Thin-film deposition studies, 171–178
Thin-film dielectrics, HafSOx, 114–117
Thin-film electronics, nanowire, 366–372
Thin-film growth, low-temperature route to, 320–321
Thin-film photovoltaic (PV) technologies, 4–5, 77, 158
Thin films
 good-quality, 241
 physisorption analysis on, 290
 sacrificial, 423
 single-walled carbon nanotubes in, 423–424
Thin-film solar cells, manufacturing, 159, 189–191
Thin-film synthesis, facets of, 114
Thin-film transistors (TFTs), xiv, 9, 77, 109–113, 397, 408–409. See also LTPS TFTs; RF TFTs; TFT entries assembled from multiple CNTs, 336–338
 based on inkjet-printed silicon film, 140–142
 based on solution-processed silicon film, 137–140
 based on spin-coated CuInTe2 films, 92
 based on spin-coated In2Se3 films, 88–89
 based on spin-coated SnSn2−xSx films, 85
 computer-aided design technology for, 19
 electrical characteristics of, 138–139, 147
 exploratory concepts, 17–19
 fabricating on plastic substrates, 337
 in future solution-based process applications, 452
 in heterogeneous three-dimensional integration, 433–434, 435
 high-performance, 16
 ink-jet-fabricated, 141
 in integrated circuits, 431
 next-generation, 14–15
RF performance, 16–17
 single-wall carbon nanotube (SWNT) based, 18
 solution-deposited oxide gate dielectric in, 116
 structure of, 12, 397, 398
 transparent, 21–22
 using μ-Si MOSFETs, 426–429, 430
Thin insulators, 121
Thiourea, desulfuration of, 206
Three-dimensional (3D) structures, next-generation, 462, 463, 464
Three-dimensional integration (3D-HGI), on plastic, 432–436
3D integrated functional electronic system, 370–372
3D NW circuit integration, 370
Tin chalcogenide films, 87. See also K2Sn2Se6; SnSe2−xSx films; Stannic entries
TiO2/CdS/CuSCN solar cell, 257–258
TIPT-based solutions, 43–44. See also Titanium isopropoxide (TIPT)
Titania films, 295. See also Titanium oxide films
Titanium dioxide (TiO2), in DSSCs, 303
Titanium isopropoxide (TIPT), 37, 38, 251. See also TIPT-based solutions
Titanium methoxyethoxide, 38
Titanium oxide (TiO2), in EISA processing, 295
Titanium oxide films. See also Titania films
 mesoporous, 297
SILAR-grown, 246–247, 250–251
Titanium phosphate films, sequential-deposition-grown, 270
INDEX

Tl–Bi–Sr–Ba–Ca–Cu–O, electrodeposition of, 219–222. See also Thallium entries
Toluene, 40
Top-down approaches, 349–350 in macroelectronics, 408 in wafer etching, 410–412
XOR gate, 360
X-ray diffraction (XRD), 97, 98, 161, 247–248. See also Powder XRD analysis; XRD entries
X-ray diffractographs, 227
X-ray fluorescence (XRF), 267
X-ray photoelectron spectroscopy (XPS), 92, 143
X-ray photoemission spectroscopy analysis, 204, 205
X-ray reflectometry (XRR), 289, 294 measurements with, 125
X-ray scans, variable-temperature, 99
XRD analysis, 173, 267. See also X-ray diffraction (XRD)
XRD patterns, 179
XRD spectra, 167–168, 176
Xylene, 40

YBCO films, high-performance, 226
YBCO superconductor, 224
Young’s modulus, 55
Yttrium oxide films, 247
Yttrium-stabilized zirconium (YSZ) oxide, 224

Zero-dimensional (0D) structures, 350–351
Zinc chalcogenide thin films, ECALE-grown, 268. See also Zn entries
Zinc oxide (ZnO) future applications of, 452–453
intrinsic, 191
nanorod carpet, 453
Zinc oxide films, 210
dip-ILGAR-grown, 268
sequential-deposition-grown, 270
SILAR-grown, 246, 247–250
Zinc oxide nanorods, 330
in next-generation applications, 458–459
Zinc oxide nanowires, 335
Zinc selenide (ZnSe) films, SILAR-grown, 253, 257
Zinc silicate films, 247
Zinc species, soluble and insoluble, 203
Zinc sulfide (ZnS) films, SILAR-grown, 253, 256–257. See also ZnS entries
Zinc telluride (ZnTe), 82, 99–100
Zinc telluride films, 98–101
SILAR-grown, 253, 257
Zinc telluride precursor, 99
Zirconium hydroxide films, 247. See also Zn,Zr,F_z films
Zirconium oxide (ZrO_2) films, 247
SILAR-grown, 252
Zirconium oxide sulfate (ZrSO_4) films, 125, 126
ZnS(O,OH) deposition, 203–206
ZnS SILAR growth, 243–244, 245. See also Zinc sulfide (ZnS) films
Zn,Zr,F_z films, SILAR-grown, 264