CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>Contributors</td>
</tr>
<tr>
<td>1. Introduction to Solution-Deposited Inorganic Electronics</td>
</tr>
<tr>
<td>Robert H. Reuss and Babu R. Chalamala</td>
</tr>
<tr>
<td>1.1 Background and Motivation</td>
</tr>
<tr>
<td>1.1.1 Electronics Technologies</td>
</tr>
<tr>
<td>1.1.2 Commercial Macroelectronic Technology</td>
</tr>
<tr>
<td>1.1.3 Macroelectronics Potential</td>
</tr>
<tr>
<td>1.2 Importance of Solution Processing</td>
</tr>
<tr>
<td>1.3 Application Challenges: TFT Devices and Circuits</td>
</tr>
<tr>
<td>1.3.1 TFT Device Fundamentals</td>
</tr>
<tr>
<td>1.3.2 Next-Generation TFTs</td>
</tr>
<tr>
<td>1.3.3 Technology for RF TFTs</td>
</tr>
<tr>
<td>1.3.4 Exploratory TFT Concepts</td>
</tr>
<tr>
<td>1.3.5 Technology Computer Aided Design for TFTs</td>
</tr>
<tr>
<td>1.4 Application Challenges: Optoelectronics</td>
</tr>
<tr>
<td>1.4.1 Photovoltaics</td>
</tr>
<tr>
<td>1.4.2 Transparent Conductive Oxides</td>
</tr>
<tr>
<td>1.4.3 Transparent Transistors</td>
</tr>
<tr>
<td>1.4.4 Light-Emitting Diodes</td>
</tr>
<tr>
<td>1.4.5 Solid-State Lighting</td>
</tr>
<tr>
<td>1.4.6 Si-Based Integrated Emitters</td>
</tr>
<tr>
<td>1.5 Application Challenges: Power Sources, Sensors, and Actuators</td>
</tr>
<tr>
<td>1.6 Conclusions</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>2. Chemical Solution Deposition—Basic Principles</td>
</tr>
<tr>
<td>Robert W. Schwartz and Manoj Narayanan</td>
</tr>
<tr>
<td>2.1 Introduction</td>
</tr>
<tr>
<td>2.2 Substrate Surface Preparation</td>
</tr>
</tbody>
</table>
2.3 Starting Reagents and Solvents 36
 2.3.1 Background 36
 2.3.2 Starting Reagents 36
 2.3.3 Solvents 39

2.4 Precursor Solution Preparation and Characteristics 41
 2.4.1 Background 41
 2.4.2 Sol-Gel Processes 41
 2.4.3 Chelate Processes 45
 2.4.4 MOD Solution Synthesis 47
 2.4.5 Solution Preparation Summary 48
 2.4.6 Other Processing Routes 49

2.5 Film Formation Behavior 49
 2.5.1 Background 49
 2.5.2 Spin Coating 49
 2.5.3 Dip Coating 51
 2.5.4 Spray Coating 52
 2.5.5 Stamping and Microcontact Printing 52

2.6 Structural Evolution: Film Formation, Densification, and Crystallization 53
 2.6.1 Background 53
 2.6.2 Film Formation 54
 2.6.3 Densification and Crystallization 55

2.7 Summary 65

References 68

3. Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction 77

David B. Mitzi

3.1 Introduction 77
3.2 Dimensional Reduction 78
3.3 Hydrazine Precursor Route 82
 3.3.1 SnSe₂,Sₓ Films 82
 3.3.2 InₓSe₂ Films 87
 3.3.3 CuInTe₂, CuInSe₂, and Cu(Ga₁₋ₓInₓ)Se₂ Films 89
 3.3.4 CuₓS Precursor 94
 3.3.5 KₓSbₓS₈ Films 94
 3.3.6 Other Metal Chalcogenide Systems 98
3.4 Similar Approaches without Hydrazine 102
3.5 Future Prospects 103

References 104
4. Oxide Dielectric Films for Active Electronics

4.1 Introduction 109
4.2 Gate Dielectric Materials Selection 109
4.3 Producing High-Quality Films from Solution 113
4.4 HafSOx Thin-Film Dielectrics 114
4.5 AIPO Thin-Film Dielectric 117
4.6 Compositionally Graded and Laminated Structures 125
4.7 Summary and Perspective 126
References 127

5. Liquid Silicon Materials
Masahiro Furusawa and Hideki Tanaka

5.1 Introduction 131
5.2 Liquid Silicon Material 132
5.3 Forming Silicon Films from the Liquid Silicon Materials 134
5.4 Fabrication of a TFT Using a Solution-Processed Silicon Film 137
5.5 Fabrication of TFT Using Inkjet-Printed Silicon Film 140
5.6 Forming SiO₂ Films from the Liquid Silicon Materials 142
5.7 LTPS Fabrication Using Solution-Processed SiO₂ Films 144
5.8 Forming Doped Silicon Films 147
5.9 Conclusions 153
Acknowledgments 153
References 153

Aloysius F. Hepp, Kulbinder K. Banger, Michael H.-C. Jin, Jerry D. Harris, Jeremiah S. McNatt, and John E. Dickman

6.1 Introduction 157
6.2 Single-Source Precursor Studies 161
6.2.1 Background 161
6.2.2 Chemical Synthesis of SSPs 163
6.2.3 Thermal Analysis and Characterization of SSPs 164
6.2.4 Preparation of I–III–VI₂ Powders from SSPs 167
6.3 Spray or Atmosphere-Assisted CVD Processing 169
6.3.1 AACVD Reactor Design 169
6.3.2 Preliminary Thin-Film Deposition Studies 171
6.3.3 Impact of Reactor Design on CuInS₂ Film Growth 178
6.4 Atmospheric Pressure Hot-Wall Reactor Parametric Study 181
6.4.1 Parametric Study Approach 181
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.2</td>
<td>Variation of Deposition Temperature</td>
<td>182</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Variation of Susceptor Location and Precursor Concentration</td>
<td>184</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Postdeposition Annealing</td>
<td>184</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Photoluminescence Studies</td>
<td>185</td>
</tr>
<tr>
<td>6.5</td>
<td>Fabrication and Testing of CIS Solar Cells</td>
<td>189</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Cell Fabrication at GRC</td>
<td>189</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Cross-Fabrication of Solar Cells</td>
<td>190</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Solar Cell Characterization</td>
<td>190</td>
</tr>
<tr>
<td>6.6</td>
<td>Concluding Remarks</td>
<td>191</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Summary</td>
<td>191</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Outlook and Future Work</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>193</td>
</tr>
</tbody>
</table>

7. Chemical Bath Deposition, Electrodeposition, and Electroless Deposition of Semiconductors, Superconductors, and Oxide Materials | 199 |

Raghu Bhattacharya

7.1 Introduction | 199
7.2 Chemical Bath Deposition | 200
7.2.1 CdS Deposition | 200
7.2.2 ZnS(O,OH) Deposition | 203
7.2.3 Cd$_{1-x}$Zn$_x$S Deposition | 206
7.2.4 Other Systems | 209
7.3 Deposition of CIGS by Electrodeposition and Electroless Deposition | 210
7.3.1 Electrodeposition of CIGS | 211
7.3.2 Electroless Deposition of CIGS | 215
7.4 Electrodeposition of Oxide Superconductors | 218
7.4.1 Electrodeposition of Tl–Bi–Sr–Ba–Ca–Cu–O | 219
7.4.2 Electrodeposition of Bi–Sr–Ca–Cu–O | 222
7.5 Electrodeposition of Cerium Oxide Films | 223
7.6 Electrodeposition of Gd$_2$Zr$_2$O$_7$ | 225
References | 229

8. Successive Ionic Layer Adsorption and Reaction (SILAR) and Related Sequential Solution-Phase Deposition Techniques | 239

Seppo Lindroos and Markku Leskelä

8.1 Introduction | 239
8.2 SILAR | 240
8.2.1 Basic Principles of SILAR | 240
8.2.2 Advantages and Disadvantages of SILAR | 241
CONTENTS

8.2.3 SILAR Deposition Equipment 242
8.2.4 Mechanism of Film Growth in SILAR 243
8.3 Materials Grown by SILAR 244
8.3.1 Oxide Films 244
8.3.2 Chalcogenide Films 252
8.3.3 Films of Metals and Other Materials 263
8.4 ILGAR 264
8.4.1 Basic Principles of ILGAR 264
8.4.2 Materials Grown by ILGAR 265
8.5 ECALE 268
8.5.1 Basic Principles of ECALE 268
8.5.2 Materials Grown by ECALE 268
8.6 Other Sequential Solution-Phase Deposition Techniques 270
References 270

9. Evaporation-Induced Self-Assembly for the Preparation of Porous Metal Oxide Films 283
Bernd Smarsly and Dina Fattakhova-Rohlfing

9.1 Introduction 283
9.2 The EISA Process 284
9.3 Characterization of Self-Assembled Films 289
9.3.1 Positron Annihilation Lifetime Spectroscopy (PALS) 289
9.3.2 Gas Physisorption 290
9.3.3 Small-Angle X-Ray Scattering (SAXS) 292
9.4 Generation of Mesoporous Crystalline Metal Oxide Films Via Evaporation-Induced Self-Assembly 294
9.5 Electronic Applications 299
9.5.1 Mesoporous Films with Insulating Framework 299
9.5.2 Mesoporous Films with a Semiconducting Framework 301
9.6 Mesoporous Films in Dye-Sensitized Solar Cells 303
9.7 Conclusions 306
References 306

10. Engineered Nanomaterials as Soluble Precursors for Inorganic Films 313
Dmitri V. Talapin

10.1 Introduction 313
10.2 Synthesis of Inorganic Nanomaterials 315
10.3 Nanoparticles as Soluble Building Blocks for Inorganic Films 318
10.3.1 Sintering Metal and Semiconductor Nanoparticles into Continuous Polycrystalline Films

10.3.2 Electronic Materials Based on Nanoparticle Assemblies

10.3.3 Multicomponent Nanoparticle Assemblies

10.4 Films and Arrays of Inorganic Nanowires

10.5 Applications Using Networks and Arrays of Carbon Nanotubes

10.6 Concluding Remarks

Acknowledgments

References

11. Functional Structures Assembled from Nanoscale Building Blocks

Yu Huang

11.1 Introduction

11.2 Building Blocks: Synthesis and Properties

11.3 Hierarchical Assembly of Nanowires

11.3.1 Fluidic Flow-Directed Assembly

11.3.2 Langmuir–Blodgett Technique-Assisted NW Assembly

11.4 Nanowire Electronics and Optoelectronics

11.4.1 Crossed Nanowire Devices

11.4.2 Nanoscale Logic Gates and Computational Circuits

11.4.3 Nanoscale Optoelectronics

11.5 Nanowire Thin-Film Electronics—Concept and Performance

11.5.1 p-Si Nanowire Thin-Film Transistors

11.5.2 High-Speed Integrated Si NW-TFT Circuits

11.5.3 3D Integrated Functional Electronic System

11.6 Summary and Perspective

References

12. Patterning Techniques for Solution Deposition

Paul Brazis, Daniel Gamota, Jie Zhang, and John Szczech

12.1 Introduction

12.2 Opportunities for Printable Inorganic verses Organic Materials Systems

12.3 Printing and the Microelectronics Industry—Present and Future

12.4 Printed Electronics Value Chain
12.5 Electrically Functional Inks 387
12.6 Printing Technologies 389
 12.6.1 Contact Printing 389
 12.6.2 Noncontact Printing—Ink Jet 393
 12.6.3 Functional Inks for Ink Jet 394
12.7 Structure of a Printed Transistor 397
12.8 Patterning Techniques for Solution Deposition: Technology Diffusion 398
 12.8.1 Standards 399
 12.8.2 Awareness 399
 12.8.3 Roadmapping for Supply Chain Development 400
 12.8.4 Quality Control/Assurance 400
12.9 Conclusions 400
 References 400

 Jong-Hyun Ahn, Matthew A. Meitl, Alfred J. Baca, Dahl-Young Khang, Hoon-Sik Kim, and John A. Rogers

 13.1 Introduction 407
 13.2 Inorganic Single-Crystalline Semiconductor Materials for Flexible Electronics 409
 13.3 Transfer Printing Using an Elastomer Stamp 412
 13.3.1 Surface Chemistry 415
 13.3.2 Thin-Film Adhesives 417
 13.3.3 Kinetic Effects 419
 13.3.4 Stress Concentration and Fracture 421
 13.3.5 Carrier Films and Carbon Nanotubes 423
 13.3.6 Machines for Transfer Printing 425
 13.4 Flexible Thin-Film Transistors that Use μs-Sc on Plastic 426
 13.5 Integrated Circuits on Plastic 429
 13.5.1 Two-Dimensional Integration 429
 13.5.2 Three-Dimensional and Heterogeneous Integration 432
 13.6 μs-Sc Electronics on Rubber 436
 13.7 Conclusion 441
 References 441

14. Future Directions for Solution-Based Processing of Inorganic Materials 449
 M. F. A. M. van Hest and D. S. Ginley

 14.1 Introduction 449
 14.2 Materials 450