Index

Academe-developed landside simulations, 650–651
Massachusetts Institute of Technology (MIT), 650
University of California (UCB), 650
University of Texas, Austin (UT-Austin), 650
Accelerate and stop distance, 89
Access, 543–572
automobile, 548–9
charter bus, 549
control systems, 372
conventional railway, 551
conventional urban rapid transit, 551
curbfront design, 562–564
high-speed ground transport, 552–554
and the landside interface, 415
layout, 564–571
level of service, 563
limousine, 550
mix of modes, 547
modal choice models, 557–559
route capacity, 564
special bus, 550
system, 545–547
taxicab, 549
travel time, 51, 53
urban bus, 550
VTOL links, 556
water modes, 557
for whom, 544
Accidents at critical rescue and fire-fighting response areas, 352–353
aircraft runway undershoot, 352
rejected takeoff, 352
runway overrun, 352
runway veer off, 352
ACRP terminal space planning model, 428–437, 563
Aerial photogrammetric measurement of obstruction, 406
ADSIM, 155
Aerotropolis, 669–673
Air cargo, 154–156, 235
Aircraft accidents types
accidents on airport active movement areas, 352
collision with other planes, 352
controlled flight into terrain (CFIT), 352
electromechanical failure, 352
structural fatigue, 352
violent weather, 352
Aircraft approach categories, FAA, 321
Aircraft Classification Number CAN, 538–541
Aircraft design
future trends in, 101–104
influence on runway length, 76–94
and performance, changes in, 74–76
Aircraft direct operating cost (DOC), 74, 76
Aircraft en-trail separation, 248
Aircraft fleet mix, 37, 38, 56
Aircraft flight management system (FMS)
aircraft Doppler radar, 188
course-line computer (CLS), 188
GPS-based sensors, 188, 204
inertial navigation system (INS), 198
on-board FMS computer, 182, 187, 198
Aircraft fueling facilities, 455
Aircraft gates, number of, 447–452
Aircraft gate types, FAA, 341
Aircraft grounding facilities, 456
Aircraft mix/classes, 254, 258, 260
Aircraft mix index, 254
Aircraft operations, 127
Aircraft operations forecast, 35, 37
Aircraft Owners and Pilots Association, 4
Aircraft parking configurations, 342–349, 452–454
Aircraft performance characteristics, 238
Aircraft performance curves, 316, 317
Aircraft performance on takeoff, 80
Aircraft seat departures, 57
Aircraft speed, 248
Aircraft to building clearances, 341, 342
Air emissions quality, 714–720
Airfield-airspace simulations
LMINET, 613
National Airspace System Performance Analysis Capability (NASPAC), 620–621
Reorganized ATC Mathematical Simulator (RAMS), 613–614, 621–623
SIMMOD, 155, 602, 611–620, 630
System Design Analysis Tool (SDAT), 630–631
TAMS-DFW simulation, 610–611
Total Airspace and Airport Modeller (TAAM), 603, 613, 623–63
Airfield capacity considerations, 298–300
Airfield configuration, 298–301
Airfield-terminal area spatial relation, 300
Air freight demand
input-output analysis, 67
Air freight demand (continued)
 national projections, 66
 regional projections, 66
Airline delay, causes of, 272–273
Airline deregulation, 47
Airline flight frequency, 57
Airline hub-and-spoke system, 110, 113
Airline hubbing operation, 25, 26
Air Line Pilots Association, 4
Airlines Deregulation Act of 1978, 108
Airline and support facilities in terminals, 416, 432
Airline yield, 36–40, 47, 57
Air operation areas (AOA), 368
Air passenger trip assignment, 48
Air passenger trip distribution, 47, 50, 56, 60
Airplane design groups, FAA, 322
Airport access, 291–293, 543–572
Airport access control, 368
Airport access simulations
 Airport Landside Planning System, ALPS (JHK Mobility), 650
 terminal roadway and curbside simulation (TransSolution), 649
Airport-airspace capacity, 602
Airport and Airway Trust Fund, 109
Airport and Airways Development Act of 1970, 16, 109, 116
Airport capacity, 56
Airport capacity assessment program (ACAP), 651
Airport capacity, factors affecting, 97–98
Airport capital improvement program (ACIP), 148
Airport choice model
 formulation, 111, 132
 probability analysis, 55
 validation, 55
Airport cities of the world
 Asia-Seoul Inchon, 687–693
 Europe-Schiphol, 673–680
 North America-DFW, 681–687
 Persian Gulf-Dubai World Central (DWC), 695–700
Airport city activity
 airport-centered business communities, 669
 airport city commercial activities, 667
 airport-oriented activities, 667
 airport-related activities, 666
 core aeronautical activities, 666
Airport Development Acceleration Act of 1973, 16
Airport Development Aid Program (ADAP), 16
Airport emergency plan, 363–367
 definition, 363
 familiarization, 365
 function and organization, 364
 hazard control in training, 366
 plan preparation, 364
 purpose, 363
 structure and content, 364
 training methods and equipment, 365
 training program, 365
 verification and conformity, 365
Airport Geographic Information Systems (GIS), 653–655
Airport Improvement Program (AIP), 17, 109, 115
Airport hubs
 large hub, 120
 medium hub, 120
 nonhub, 120
 small hub, 120
Airport infrastructure and information management, 127
Airport infrastructure development, 127
Airport landside capacity, 235, 273–293
Airport landside simulations, 644–653
ACAP (University of Texas), 648
ARENA (Transolution), 648
terminal simulation (Preston Group), 648
TERMSIM (Leigh Fisher), 648
TSA Airport Passenger and Baggage Flow Model, APBFM, 648
Airport layout
 airport layout plan (ALP), 148, 157, 400
 design, 162–163
 plan drawing set, 157
 plan update, 160
 principles of, 298
Airport master planning process, 106
Airport master plans, 118, 151–162
Airport obstruction mapping surveys, 399–402
FAA aeronautical survey standards, 400
FAA aeronautical surveys, 400, 404
OE obstruction surveys, 400, 404
Airport operational performance, 237
Airport operations management, 127
Airport parking price structure, 290
Airport planning process, 21
Airport radar service area (ARSA), 191
Airport reference code, 298, 321–322
Airport role in regional emergencies, 372
Airport runway optimization model, ARO, 309
Airports Act (1986), 7
Airport safety, 351–359
Airport Safety and Capacity Expansion Act of 1987, 17
Airport Safety and Capacity Expansion Act of 1990, 17
Airport safety comprehensive plan, 351
Airport safety enhancement measures
 avoiding nonionizing radiation, 353
 emergency access/egress, 354
 frangible-mounted windsocks and instruments, 354
Index 741

safety-enhancing landscaping, 354
safety-enhancing roadway design, 354
Airport safety management system (SMS), 355–359
Airport safety zones, 353
 public safety zones, 353
 runway end safety zone, 353
Airports Association Council International (AACI), 4
Airports Council International (ACI), 4
Airports Council International-North America (ACI-NA), 126
Airport security, 359–361
Airport security planning, 367–373
Airport security program (ASP), 368–371
Airport selection criteria, 51, 52
Airport simulations, 609
 airside, 609
 environmental, 609
 landside, 610
Airport surface detection equipment (ASDE), 181, 201
ASDE-3, 181, 201
ASDE-X, 201
 multilateration sensors, 201
Airport surveillance radar (ASR), 181, 199
ASR-1, 181, 199
ASR-7, 199
ASR-8, 199
 Digital ASR-9, 200, 204
 Digital ASR-11, 200
Airport site selection, 177–178
Airport surveys, 54
Airport system, 105
Airport system performance, 137
Airport system plan, 133
Airport tenant security program, 370
Airport terminal design concept evolution, 273–275
Airport vicinity air pollution model (AVAP), 639
Airport visual navigation aids, 181
Air quality assessment, 719
Air quality standards, 715–717
 air toxics, 718
 climate change, 717–718
 effects on aviation, 714–715
 greenhouse gas emissions, 717–718
Airport route surveillance radar (ARSR), 181, 198, 204
 arrival capacity, 239
 departure capacity, 238
 gate capacity, 264–266
 runway capacity, 237–263
 taxiway capacity, 254
Airport side capacity and delay factors, 242–245
 air traffic control, 242–244
 demand characteristics, 243
 design factors, 244
 environment, 244
Airspace and obstacle clearance criteria, 207, 209
Airspace classification
 Class A, 189
 Class B, 191
 Class C (ARSA), 191
 Class D, 191
 Class E, 193
 Class G, 193
 continental control area, 189
 military operation area (MOA), 188
 positive controlled airspace (PCA), 188
 special use airspace, 188
 uncontrolled airspace (Class G), 188, 193
Airspace safeguarding, 373–411
 operational criteria, 381–383
 planning criteria, 374–381
 safety criteria, 383–385
Air Transport Association of America, 4
Air transport demand
 airport demand, 25, 56, 57
 international, 25
 national, 25
 process, 22
 regional and local, 25
Air transport speed, developments in, 102
Air transportation system planning, 115
Air travel demand forecast level
 airport, 50, 56
 national, 34
 regional, 40, 45
Air trip distribution models
 freight, 67
 passengers, 40
Air trip generation, 47, 50, 52, 56
Air trip generation models, 40, 62
Air trip generation-distribution models
 mode specific, 64, 65
 multimodal, 64, 65
Airways, 186–193
 GPS-based RNAV, 187
 jet, 187
 low/medium frequency airways (L/MF), 186
 VOR (Victor), 186, 193
Airways Modernization Board (AMB), 1957, 180
All freight aircraft, 469
American Association of Airport Executives (AAAE), 4
American Society of Civil Engineers (ASCE), 602
Annual aircraft delay, 263
Annual service volume (ASV)
 aircraft mix, 256
 annual aircraft operations, 257–258
 annual average aircraft delay, 256
 average daily aircraft operations, 256–258
 average peak-period aircraft operations, 257–258
Index

Annual service volume (ASV) (continued)
 practical annual capacity, 256
 runway use configuration, 256
Approach decision height and visibility minima, 196
Approach runways: dimensions and slopes of OLS, 314
Approach surfaces, 309–315
 apron facilities and requirements, 454–456
 frontage at terminals, 452–453
 geometry of minimum aircraft parking turns, 344
 roadways, 456
 space requirements, 340–349
Archaeological resources, 721
Architectural resources, 721
Area navigation (RNAV), 205–211
 DME/DME RNAV, 207
 FAA/ICAO RNAV criteria, 207
 Precision area navigation (P-RNAV), 205–211
 RNAV X, 207
Area-equivalent method, 639
Atlanta Hartsfield Airport, 424, 544, 547, 551
Atlanta Midway Airport, 302, 303, 551
Automatic dependent surveillance-broadcast (ADS-B), 182, 205–206
Available seat miles, 38–40,
Average aircraft delay, 236
Average aircraft size, 35, 38, 56,
Average interarrival time, 237, 274
Average passenger trip length, 35–38, 47
Average system load factor, 35, 38, 40, 56
Aviation and Transportation Security Act of 2001, 18
Aviation demand forecast model, 603
Aviation forecasts, 148
Aviation function within State Departments of Transportation, 8
Aviation planning and regulation at State level, 6–7
Aviation System Analysis capability (ASAC), 644
Aviation System Plan, 105
BAA plc, 7, 129
Baggage
 claim, 439
delivery systems, 443
 handling, 438–444
 loading and unloading sequence, 438–440
makeup area model, 434
screening model, 434
Baltimore Washington Airport, 551
Base course, 518–522
Basic Utility Stage I airports, 19
Basic Utility stage II airports., 19
Beijing Airport, 555
Bilateral air transport agreements, 108
Biodiversity, 720–721
Blast damage in passenger terminals, 420
Bottom-up forecast, 34, 40, 51, 60
Boxed runways, 304
British Airways, 7, 58, 59, 61
Bureau of Transportation Statistics (BTS), 35–36, 139
 Form 41, 35, 36
 Part 298-C form, 35, 36
 Form T-100, 35, 36
Bypass traffic, 472
CAD simulations of parking movements, 346
Calculation of aircraft delay, 260–264
California Corridor study, 66
California Bearing Ratio, 521–527
Canadian Transport Commission, 64
Capacities of freight and combi-aircraft, 469–470
Capacity, 235
Capacity enhancement measures, 267–268
 efficient ATC/ATM Procedure, 267
 reduced runway crossing, 267
 reduced runway intersections, 267
 satellite-based navigation technologies, 268
 synchronized arrival-departure sequencing, 267
Capacity-constrained airports, 48, 51
Capacity-unconstrained airports, 47, 50, 55
Car parking in passenger terminal buildings, 420
Cargo handling concepts, 473
Cargo handling on apron, 471–472
Cargo lifts, 471
Cargo service airport, 120
Cargo terminals
 design of, 472–474
 factors affecting size and form, 458–462
 flow through, 464
 functions of, 457–458
 insurance, 474
 security, 474
 site selection factors, 473
Categorical exclusions, 15
Centralized passenger processing, 420
Change of mode, 414
Change of movement type, 414
Charter flights, 426–427
Checkin and ticketing model, 43
Chicago Airports Capacity Study, 45, 50
Chicago Area Transportation Study (CATS), 55
Chicago Convention on Civil Aviation of 1944, 2
Chicago Midway Airport, 302, 303, 551
Civil Aeronautics Act, 1938, 108
Civil Aeronautics Administration (CAA), 15
Civil Works Administration (CWA), 15
Clean airside—dirty landside, 419
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Collaborative decision making (CDM), 182</td>
</tr>
<tr>
<td>Clearways, 89–90, 318–319</td>
</tr>
<tr>
<td>Clearances, Aircraft on aprons, 342–343</td>
</tr>
<tr>
<td>Coefficient of curvature C_c, 512</td>
</tr>
<tr>
<td>Coefficient of runoff C_r, 490</td>
</tr>
<tr>
<td>Coefficient of uniformity C_u, 512</td>
</tr>
<tr>
<td>Commercial service nonprimary airport, 19, 120</td>
</tr>
<tr>
<td>Commercial service primary airport, 19, 120</td>
</tr>
<tr>
<td>Common-use check in, 281</td>
</tr>
<tr>
<td>Communication radio ranges, 193</td>
</tr>
<tr>
<td>civilian VHF range, 193</td>
</tr>
<tr>
<td>military UHF range, 193</td>
</tr>
<tr>
<td>Communication radio receivers and transmitters, 193</td>
</tr>
<tr>
<td>Composite aircraft, 597</td>
</tr>
<tr>
<td>Compound helicopter, 597</td>
</tr>
<tr>
<td>Conflict resolution, 182</td>
</tr>
<tr>
<td>Conical surface, 310</td>
</tr>
<tr>
<td>Containers, 457–458, 465–469</td>
</tr>
<tr>
<td>Control of secured areas, 371</td>
</tr>
<tr>
<td>Controllers workload, 202</td>
</tr>
<tr>
<td>Core airport, 141, 143, 145</td>
</tr>
<tr>
<td>Cross-sections</td>
</tr>
<tr>
<td>runway, 323</td>
</tr>
<tr>
<td>taxiway, 325–330</td>
</tr>
<tr>
<td>Crosswinds</td>
</tr>
<tr>
<td>effect of, 94–95</td>
</tr>
<tr>
<td>maximum permissible components, FAA, 301</td>
</tr>
<tr>
<td>maximum permissible components, ICAO, 302</td>
</tr>
<tr>
<td>Cruising speeds, trends in, 78</td>
</tr>
<tr>
<td>Cultural resources, 721</td>
</tr>
<tr>
<td>Dallas Fort Worth (DFW) International Airport, 424, 447, 681–687</td>
</tr>
<tr>
<td>Data requirements for master planning, 163–166</td>
</tr>
<tr>
<td>de Havilland DHC-6 Twin Otter, 595</td>
</tr>
<tr>
<td>de Havilland DHC-7, Dash 7, 595</td>
</tr>
<tr>
<td>de Havilland DHC-8, Dash 8, 595</td>
</tr>
<tr>
<td>Decentralized passenger processing, 419</td>
</tr>
<tr>
<td>Definition of modeling concepts, 603</td>
</tr>
<tr>
<td>animation, 603</td>
</tr>
<tr>
<td>demand-supply relationship, 603</td>
</tr>
<tr>
<td>LOS, 603</td>
</tr>
<tr>
<td>model, 603</td>
</tr>
<tr>
<td>simulation, 603</td>
</tr>
<tr>
<td>Delphi technique, 27</td>
</tr>
<tr>
<td>Demand-capacity analysis, 155–157, 234, 274, 276</td>
</tr>
<tr>
<td>Demand peaking pattern, 236</td>
</tr>
<tr>
<td>Density per unit area, 236</td>
</tr>
<tr>
<td>Denver International Airport, 551</td>
</tr>
<tr>
<td>Department of Commerce—Aeronautics Branch, 179</td>
</tr>
<tr>
<td>Department of Homeland Security, 4, 6</td>
</tr>
<tr>
<td>Department of Transportation Act of 1967, 4</td>
</tr>
<tr>
<td>Deregulated free market, 107</td>
</tr>
<tr>
<td>Determination of risk severity and probability, 358</td>
</tr>
<tr>
<td>Discrepancies in application standards, 393–397</td>
</tr>
<tr>
<td>Montgomery Field, San Diego, California, 397</td>
</tr>
<tr>
<td>Oakland International Airport, California, 394</td>
</tr>
<tr>
<td>Discrete-event simulation concept, 604–605</td>
</tr>
<tr>
<td>activity, 604</td>
</tr>
<tr>
<td>entity, 604</td>
</tr>
<tr>
<td>process, 605</td>
</tr>
<tr>
<td>Discrete-event simulation types, 605</td>
</tr>
<tr>
<td>activity oriented SIMSCRIPT, 605</td>
</tr>
<tr>
<td>event oriented, ECSL, 605</td>
</tr>
<tr>
<td>process oriented GPSS, 605</td>
</tr>
<tr>
<td>Documentation of freight, 458, 469–470</td>
</tr>
<tr>
<td>Dollies, 471</td>
</tr>
<tr>
<td>DOT Volpe National Transportation Systems Center, 643</td>
</tr>
<tr>
<td>Drainage, 489–508</td>
</tr>
<tr>
<td>of base and subgrade, 506</td>
</tr>
<tr>
<td>design with ponding, 501</td>
</tr>
<tr>
<td>design without ponding, 500</td>
</tr>
<tr>
<td>intercepting, 507</td>
</tr>
<tr>
<td>subsurface, 504–506</td>
</tr>
<tr>
<td>Dual orientation runway sets, 304</td>
</tr>
<tr>
<td>Dubai World Central (DWC), 695–700</td>
</tr>
<tr>
<td>Duplex communication, 181</td>
</tr>
<tr>
<td>Econometric demand forecast models, 30</td>
</tr>
<tr>
<td>Economic comparison of aircraft groups, 574</td>
</tr>
<tr>
<td>Economic feasibility, 160</td>
</tr>
<tr>
<td>Eddington Study, 131</td>
</tr>
<tr>
<td>Effective safeguarding framework, 351</td>
</tr>
<tr>
<td>e-freight, 470</td>
</tr>
<tr>
<td>Electrical supply, 455</td>
</tr>
<tr>
<td>Elevating transfer vehicle, 459, 462, 471, 473, 479–485</td>
</tr>
<tr>
<td>Empty operating weight, 92</td>
</tr>
<tr>
<td>Enhanced surveillance functionality, 207</td>
</tr>
<tr>
<td>En-route navigation aids, 181, 186, 193–194, 201, 207, 209–210, 214</td>
</tr>
<tr>
<td>automatic direction finding, ADF, 193</td>
</tr>
<tr>
<td>distance measuring equipment, DME, 181, 193, 201, 207, 209–210, 214</td>
</tr>
<tr>
<td>tactical air navigation, TACAN, 194, 201</td>
</tr>
<tr>
<td>very high frequency omni-directional range, VOR, 181, 186, 193, 201, 209–210, 214</td>
</tr>
<tr>
<td>Environmental considerations of master plan, 152–153</td>
</tr>
<tr>
<td>Environmental guidance, 706–707</td>
</tr>
<tr>
<td>European Union, 706–707</td>
</tr>
<tr>
<td>ICAO, 707</td>
</tr>
<tr>
<td>United States, 706</td>
</tr>
<tr>
<td>Environmental impacts of airports, 704–738</td>
</tr>
<tr>
<td>Environmental legislation, 705–706</td>
</tr>
<tr>
<td>European Union, 705</td>
</tr>
<tr>
<td>United States, 705</td>
</tr>
</tbody>
</table>
Environmental review, process, 707–714
affected environment, 711
agency coordination, 709
alternatives, 710–711
decision document, 713–714
environmental consequences, 711–712
levels of review and documentation, 708–709
project purpose and need, 710
public review and participation, 712–713
scoping, 709
Environmental Sciences Research Institute (ESRI)-ArcGIS, MapInfo, ArcInfo, 655
Environmental simulation models, 635–644
Aviation Environmental Design Tool, AEDT, 635–637
Emission and dispersion Modeling System, EDMS, 639–642
Flight Track Noise Impact Model, FTNIM, 644
Integrated Noise Model, INM, 626, 637–639, 643
Model for Assessing Global Exposure to Noise of Transport Aircraft, MAGENTA, 642
System for Assessing Global Emissions SAGE, 643
EPA Clean Air Act, 639
EPA MOBILE6 model, 639
Equivalent single wheel load, ESWL, 523
EUROCONTROL, 182, 205, 614, 621, 623
European Union Emissions Carbon Trading Scheme, 131
Expandability, 447
Expeditures, 10–11
Expert judgment, 26, 45, 56
Exponential forecast formulation, 30
Express freight terminals, 485–486
FAA AC 150/5300–16A, 403
FAA AC 150/5300–17A, 403
FAA Adaptation Controlled Environment System (ACES), 631
FAA Advanced Traffic Management System (ATMS), 239
FAA Aeronautical Information Manual, 402
FAA Aeronautical Obstruction Charts (AOC), 402
FAA Aeronautic Survey Program (ASP), 402
FAA air traffic control facilities, 183–184, 203–204
air route traffic control center, ARTCC, 183, 203–204
air traffic control system command center, ATCSCC, 204
air traffic control tower, ATCT, 184, 204
flight service stations, FSS, 204
terminal radar approach control, TRACON, 184, 203–204
FAA Airport Capacity and Delay Handbook, 262
FAA airport capacity group models, 631–632
airfield delay simulation model, ADSIM, 631
ASV evaluation model, 632
runway delay simulation model, 632
FAA airport emergency plan (AEP), 362–366
comprehensive emergency management plan, CEM, 363
preparing AEP emergency operations plan, EOP, 363
FAA airport landslide simulation (ALSIM), 645–648
FAA airport safety management system, 355–359
FAA Advisory Circular 150/5200–37, 355
FAR Part 139-Airport Certification, 355
FAA airport surveying-GIS program, 655
FAA ATSCC models, 632
high-altitude route system, 632
SMARTFLO, 632
FAA automated radar terminal system (ARTS), 631
FAA enhanced traffic management system (ETMS), 631, 634
FAA forecast system accuracy evaluation, 37
FAA Form 7460–1, Notice of Proposed Construction or Alteration, 376–381, 398
FAA MITRE-developed models, 632–635
detailed policy assessment tool, DPAT, 632
enhanced airfield capacity model E-ACM, 633
terminal airspace visualization tool, TAVT, 633
FAA NAS Modernization Program, 184
FAA national aviation demand forecasts system, 27, 34, 37, 68
FAA obstruction evaluation (OE) study process, 387–390
determination of hazard, 393
determination of no hazard, 393, 399
height for not exceeding, 393
Step 1: Inform FAA of intention to build, 388
Step 2: Processing form, 388
Step 3: Obstruction criteria evaluation, 388
Step 4: Circulation of proposals, 389
Step 5: Evaluating aeronautical effect/issuance of determination, 389
FAA obstruction surveys, 401–402
aerial photography and satellite imagery, 401
area navigation approach survey, 402
geodetic surveys, 401
navigational aid surveys, 401
obstruction surveys, 401
planimetric surveys, 401
runway and stopway surveys, 401
FAA Office of Aviation Planning and Policy, 34
FAA Office of Aviation Security, 368
FAA operational evolution plan (OEP), 270
FAA Order 7400.2-Handling Airspace Matters, 389
FAA Order 7400.9U-Airspace Designations and Reporting Points, 186
FAA Order 8260.3B-Terminal Instrument Procedures-TERPS, 381–388
minimum obstruction clearance, MOC, 387
obstacle clearance surface, OCS, 382
required obstacle clearance, ROC, 382
standard minimum climb gradient, CG, 382
FAA Part 77 standards, 375
FAA Reauthorization Act of 2010, 18
FAA risk assessment matrix, 358
FAA SMS analysis, 356–359
gap analysis, 357
safety assessment and assurance, 356
safety management system, 356
safety policy, 357
safety promotion, 357
safety risk control, 357
safety risk management, SRM, 357
system risk assessment, 356
FAA SRM five phases, 357–359
FAA system analysis recording (SAR), 630
FAA terminal area forecast (TAF), 34, 643
FAA-TRB industry forecast workshop, 27
Facilities improvement plan, 158
Facilities required at the passenger terminal, 415–417
Facility requirements, 154–155
FAR Part 91—General Operating and Flight Rules, 385
FAR Part 12—Operating Requirements: Domestic, Flag and Supplemental Operations, 383–385
airplane takeoff limitations, 383
one engine inoperative, 383–385
FAR Part 135—Operating Requirements: Commuter and On-Demand Operations, 385
FAR Part 150—Airport Noise Compatibility Planning, 637
FAR Part 161—Notice and Approval of Airport Noise and Access Restrictions, 637
Federal Airport Act of 1946, 15
Federal Aviation Administration (FAA), 4–5
Federal Aviation Agency, 4
Federal Emergency Relief Administration (FERA), 15
Federal financing, 15–18
Federal grants, 15
Federal share of project costs, 17
Field length
definitions, 89
regulations, air transport aircraft, 81–90
regulations, general aviation aircraft, 90–91
requirements, 81
Final approach and takeoff area, FATO, 579–592
Financial feasibility analysis, 158–160
Fix, 186, 204
Flexibility of design, 444–447
Flexible pavement, design example 520–521
Flight level, FL, 191
Forecasts, aerospace industry outlook, 47
Frankfurt Airport, FRAPORT, 544, 551, 569
Freight
emergency demand, 460
planned demand, 460
preflight assembly, 470
regular demand, 460
interline transfers, 464
forecasts, 458
Freight carrying aircraft, 469–470
Freight terminals
architectural decisions, 473
designs, 472–474, 479–485
factors affecting size and form, 458–462
flow through, 464
functions of, 457–458
insurance, 474
integrated carriers, 485–486
security, 474site selection criteria, 473
Frequency of airline service, 51, 53, 57
Fuel consumption efficiency, 103–104
Function of passenger terminal, 413
Functional simulation models, 604
accounting time based, 604
analytical, queuing, 604
Monte Carlo, 604, 644, 651
Future airport development drivers, 268
commercialization, 268
consistent traffic growth, 268
globalization and global alliances, 268
Gate arrival terminals, 421
Gate capacity, 264–266
aircraft servicing operation, 265
apron gate parking arrangement, 265
exclusive use gates, 265
gate occupancy time, 265
shared use gates, 265
Gate demand, 432–433, 450–451
model, 432–433
Hart method, 451
Loughborough method, 450
Sir Frederick Snow method, 450
General Accounting Office (GAO) reports, 272
General aviation (GA)
airport, 19, 120
demand forecast, 68
operations, 235
requirements, 156
General obligation bonds, 12–13, 158
General Utility Stage I airports, 20
General Utility Stage II airports, 20
GIS system and database, 148
Global city characteristics, 660–661
cultural, 661
economic, 660
Index

Global city characteristics (continued)
infrastructural, 661
political, 660
Global city regions, 659–660
Global navigation satellite system (GNSS), 209
Global partnership with foreign enterprise, 107, 109
Global village, 659
Globalization and World Cities Study Group and Network (GaWC), 660
Gompertz forecast formulation, 30
Government-regulated monopoly, 107
GPS landing system (GLS), 198, 214
Gravity model, 60, 61
Gross national product (GNP), 35–38, 47, 57, 66
Ground access, 156–157, 159
Ground-based augmentation system (GBAS), 209, 213–214
Ground-based regional augmentation system (GRAS), 209
Ground servicing arrangements, 127, 347
Ground servicing equipment, 348
Hart method of estimating gates, 451
Headwalls, 504
Helicopters, 573–595
characteristics and trends, 573–576
dimensions, 575–576
Helicopter instrument lighting system, HILS, 593–594
Heliports, 573–595
airspace obstructions, 578
approach-departure path, FAA, 584
design criteria, 297, 577–595
dimensions, 581
direction of prevailing winds, 579
elevated, 592
final approach and takeoff area, FATO, 579–592
generic design recommendations, ICAO, 586
layout, 579–585
lighting, 588–592
marking, 589–591
obstacle limitation surfaces ICAO, 586
nonprecision instrument operations, 593
parking area design and marking, 588
planning, 577–595
precision approaches, 594–595
safety area, 580, 586
site selection, 577–579
turbulence, 579
visibility, 579
Hierarchy of planning, 151
Highway Capacity Manual (HCM)-LOS, 289–293
Historic resources, 721
Holding aprons, 340
Holding areas for passengers in terminals, 416
Home interview surveys, 54
Hong Kong International Airport, Chek Lap Kok, 424, 554
Horizontal surface, 310
Hourly aircraft delay, 260–263
average hourly delay, 261
arrival delay factor, ADF, 260
arrival delay index, ADI, 260
arrival departure ratio, 260
demand profile factor, 261
departure delay factor, DDF, 261
departure delay index, DDI, 260
daily delay per arrival on runway DAHA, 262
daily delay per departure on runway DAHD, 262
total hourly aircraft delay DTH, 262
Houston International Airport, George W. Bush, 447
IATA Airport Development Reference Manual, 280
IATA airport emergency management guidelines, 360
IATA Crisis Communication Manual, 367
IATA guidance on communication during crisis, 366–367
establish crisis center, 366
HQ information center, 367
HQ media briefing center, 367
site information center, 367
IATA level of service standards, passengers, 430–431
IATA space standards for cargo terminals, 275, 479, 485–486
IATA unit load devices, 467–469
ICAO Approach and departure procedures (PANS-OPS), 201
ICAO Annex 9-Facilitation, 275
ICAO Annex 15-Aeronautical Information Service, 655
ICAO Annex 16-Environmental Protection, 639
ICAO Annex 17-Aviation Security, 359
ICAO Aviation safety management system (SMS), 355
ICAO Committee on Aviation Environmental Protection (CAEP), 643
ICAO engine exhaust emissions data bank, 639
ICAO safeguarding standards, 375
Identification of friend-or-foe (IFF), 199
Igloos, 465
Illinois-Indiana Regional Supplemental Airport study, 45
Imaginary surfaces, FAA, 309–312
Imaginary surfaces, ICAO, 312–314
Importance of passenger expenditures, 426
Incheon International Airport, 555
Independent IFR simultaneous approach, 299
Independent runways, 299, 322–323
Industrial development authority bonds, 14, 158
Industry cross-sectional data, 24
Inlets, 503
Instrument flight rules (IFR), 182, 191, 201–203
IFR conditions, 182
IFR operation, 181, 182, 191, 203
IFR procedures, 182, 201
VFR procedures, 181, 201
Instrument runway approach and landing system,
ILS, 181, 194, 201, 204
guidance: localizer and glide path, 194, 201, 214
range: marker and beacons, 181, 194, 201, 214
visual: lights and markings, 194
Integrated demand forecast framework, 33
Integrated noise model, INM, FAA, 724–725
Integrator freight terminals, 485–486
Internal circulation in passenger terminals, 416
International Air Transport Association (IATA), 4,
47, 50
International Civil Aviation Organization (ICAO),
1–3, 213–214, 215
International Conference for Air Navigation
(ICAN), 2
International gateways, 107
Intersecting runways, 298
Inverness Airport, 450
Isolation of piers in security emergency, 419
John F. Kennedy International Airport, 302, 303,
424
Kansas City International Airport, 421
Kennedy International Airport, 423
Kennedy report of 1975, 111
Kitty Hawk, N.C., 1
Kuala Lumpur International Airport, 424, 444, 555
Landside airport parking, 289–291
Landside facilities functional types, 235–237, 275
holding facilities, 236, 275
processing facilities, 235, 275
transit facilities, 236, 275
Landside hold/waiting facilities, 285–287
Landside level of service (LOS), 275–293
Landside pickup/dropdown: levels of service, 563
Landside processing facilities, 278–285
baggage claim, 284–285
government inspection control, 283–284
passenger baggage checking, 278–282
passenger security control, 282–283
Landside terminal curb frontage, 288
Landside transit/circulation facilities, 287
Lateral and longitudinal navigation performance,
207
Left-luggage areas, 420
Length of common approach path, 248
Level of service (LOS) standards, 51, 235, 275,
430–431, 563
Levels of planning
project, 106
strategic, 106
tactical, 106
Linear apron concept, 420
Linear forecast formulation, 30
Liquid limit, 512
Lisbon International Airport, 444
Local-area augmentation system (LAAS), 182
Local government taxes, 15
Logistic curve formulation, 40
Logistics Management Institute (LMI), 613, 643,
644
London Airport system, 129
London Gatwick International Airport, 129, 422,
547, 551, 554
London Heathrow Airport, 129, 424, 544, 547, 551,
554, 555, 673
London Stansted International Airport, 129, 562
Longitudinal grades
for runways, 332–335
for taxiways, 336
Loose cargo, 469
LORAN-C, 181, 198
Los Angeles International Airport, 544, 681
Loughborough Globalization and World Cities
Study Group and Network (GaWC), 660
Loughborough method for aircraft gate demand, 450
Low-cost carrier (LCC), 43, 144, 235, 443
Low-cost carrier terminals, 443
Luton Airport, 129
Magnetic azimuth, 307
Mail and express parcel facilities, 485–486
Makariou, M., 453
Manholes, 503
Marker beacons, 181, 196
inner marker, 181, 196
middle marker, 181, 196
outer marker, 181, 196
Market share analysis, 28
Markovian interarrival services process, 246
Massachusetts Institute of Technology (MIT), 139,
140, 643, 650
Master plan
FAA, elements of, 151–160
ICAO, elements of, 160–162
objectives, 150
preparation process, 161
report, 167–177
Materials handling, 462
Matrix of landing intervals, 253
Matrix of minimum intervals, 249, 251, 251, 253
Index

McKinley Conway concepts, 663
airport city, 663
fly-in community, 663
fly-in park, 663
Mean arrival/departure rate, 237
Mechanical assistance mobility devices, 287
Mechanization, 460–462
MicroLOGIT, 54
Microwave landing system (MLS), 181, 196–198, 214
Milan Malpensa International Airport, 421
MITRE, 139, 238, 240, 272, 620, 627
Modal choice, 40–41, 62, 67
cost disaggregate models, 62
models, 40, 41, 62, 67
Modeling tools
computer-based, 604
graphical, 604
manual, 604
physical, 604
Model types for system operation simulation,
606–609
analytical models, 606
continuous simulations, 607
discrete-event simulations, 607
Monte Carlo simulations, 606
Modularity, 443
Monopulse secondary surveillance radar (MSSR), 199
Montreal Mirabel International Airport, 422
Multiairport region demand forecast, 43
Multinomial Logit model (MNL) Use, 52–55
calibration, 54
formulation, 52
utility function, 52–55
Multivariate statistical techniques, 31
Munich International Airport, 461, 547, 570, 673
NAS airport performance databases, 270
Airline Service Quality Survey (ASOP), 270
Aviation Performance Matrix (APM), 270
Aviation System Performance Metrics (ASPM), 270
Enhanced Traffic Management System (ETMS), 270
NAS airport system capacity, 267–272
NAS system capacity performance indicator, 271
National Airport System Plan, 18–20
airports, 385, 399–400, 403
NAS airspace, 602, 609, 613, 620, 623, 632, 654, 655
NAS architecture, 126, 184–186, 203–205, 214
NAS pacing airports, 239, 240, 266
National Airport System Plan (NASP), 116, 126
National Association of State Aviation Officials (NASAO), 4
National Oceanic and Atmospheric Administration (NOAA), 308
National Plan of Integrated Airport Systems (NPIAS)
airport categories, 119
NPIAS Plan, 18–20, 151, 267
report, 110, 115, 125, 134, 140
National Resources Conservation Service (NRCS), 491
National Transportation Safety Board (NTSB), 4, 6
National travel market surveys, 30
National Weather Service, 491
Navigation-based transmitter-receiver frequencies, 181
Navigation specification, 207, 209–211
Need for national and international organizations, 1
Newark International Airport, 140, 421, 551, 681
New management and planning models, 669
advanced high-technology convenience, 670
integrated land use planning model, 671
new operating model, 669
New technology of airport obstruction mapping,
LIDAR, 407–411
airborne LIDAR, 407
data collection of airborne LIDAR, 409
implementation of airborne LIDAR surveys, 407–411
LIDAR data processing, 407
LIDAR digital evaluation model (DEM), 407
New York Idlewild Airport, 302
New York JFK International Airport, 140, 551
New York La Guardia International Airport, 140, 551
Next-generation air transportation system
(NextGen), 182, 205, 230–231
NEXTOR, 138, 612
Night quota systems, 101
Noise
emissions, 100
exposure, 101
impact on airport design, 98–101
limits, approach, flyover and lateral, 99
Noise certification requirements, 98–101
Noise dose, 101
Noise metrics, 638
community noise equivalent level (CNEL), 638
day-night level (DNL), 638, 642
noise exposure forecasts (NEF), 638
Noise power–distance data, 637
Nonoperating expenses, 10
Nonoperating revenues, 10
Nonprofit corporation bonds, 14, 158
Normal all engine takeoff, 89
Nose loading freighters, 465, 471–472
Object-clearing criteria, 330–332
Object-free area, 330
Object-oriented programming (OOP), 606
attributes, 606
messages, 606
objects, 606
values, 606
Object-oriented programming (OOP) landside simulation, 651–652
encapsulation, 652
inheritance, 652
polymorphism, 652
Observation decks, 419
Obstacle-free zone (OFZ), FAA, 330–332
Obstacle limitation surfaces (OLS), 313, 314
Obstruction notice, 376–378
Obstruction surveys, advantages and disadvantages, 406–407
Obstructions to airspace, FAA and ICAO, 309–312
Office of Airport Safety and Standards, 511
Official Airlines Guide (OAG), 616, 643
Omega navigation network, 198
On-board navigation performance monitoring and alert, 207–211
One-and-a-half-level operation, 424
On-time arrival statistics, 267
Open-apron designs, 421
Open channels, design of, 502
Origin-destination (OD) traffic, 131
Orlando International Airport, 423
Oslo Airport competition, 445
Oslo Gardemoen International Airport, 554
Outbound security check area model, 434
Parabolic forecast formulation, 30
Parallel runways, 304
Paris Charles de Gaulle Airport, 424, 544, 547, 551, 673
Paris Orly International Airport, 569
Parking configurations for aircraft, 452–454
Parking space provision, 559–562
Passenger
behavior in the terminal, 426–428
expenditures, 428
flows, 417–418
holdrooms, 436–437
processing, centralized and decentralized, 420
terminals
airside interface, 416
blast damage, 419
car parking integral with, 420
facilities required, 414–416
function of, 414
internal circulation, 416
for LCCs, 414
security considerations, 418–420
single level, 424
vertical distribution of activities, 424–425
terminal user, 414–415
Passenger demand, 25, 40, 45, 49, 50, 55, 57
connecting, 25, 45, 49, 50, 57
origin destination (OD), 25, 40, 45, 49, 50, 55, 57
Passenger enplanement forecast, 35, 37
Passenger-responsive approach, 276–278
airport service passenger surveys, 277
capacity procedure using simulation, 277
LOS procedure using PR model, 277
perception–response (PR) model, 277
performance model/capacity curve, 277
service measure thresholds, 277–278
Passengers
physical separation of, arriving and departing, 419
processing, 414
Passenger socioeconomic profile, 49
Passenger traffic by type, 429
Patterns of airport ownership, 7–9
Pavement Classification Number (PCN), 538
Pavement design, 508–541
bases, 518–522
FAA methods, 511
flexible, 509–527
jointing, 533–536
light flexible, 536–537
light rigid, 537
rigid, 530–531
subbases, 518–520
subgrade compaction requirements, 517
subgrades, 517–520
unstabilized base, 518–519
Pavement performance, 509–516
Pavements for light aircraft, 536–537
Payload range, 91–94, 104
Peak hour demand, 428
Peak hour, 460
Peak-period planning-design criterion, 57
BAA standard busy rate (SBR), 58, 276
FAA typical peak hour passenger (TPHP), 57, 27
IATA airport busy day and busy hour rate (BHR), 58, 276
30th-highest hour volume, 58
People movers, APMs, 424
Performance-based navigation (PBN), 205–211
Philadelphia International Airport, 551
Pier fingers, 421–422
Piers
three-level operation, 425
two-level operation, 425
Pier satellites, 421–422
Piper, Hans, 451
Planning Airport City and Aerotropolis, 700–702
Planning and Grant Program (PGP), 109
Plastic limit, 512
Poisson arrival distribution, 246
Population socioeconomic profiles, 30
Port Authority of New York and New Jersey, 43
Position of stakeholders with OE, 397–399
Airlines’ Pilot and Aircraft Owners Association (AOPA), 398
Airports Consultants Council (ACC), 397
Power-to-weight ratios, 80
Precision approach radar (PAR), 181, 198
Preliminary runway capacity analysis, 258–260
Preplanning in the master plan, 152
President’s Commission on Critical Infrastructure Protection, 360, 367
Primary airports, 186, 191
large-hub airports, 186, 191
medium-hub airports, 186
small-hub airports, 186
Primary surface, 310
Primary surveillance radar (PSR), 181, 198
Private or third party financing, 158
Processing of passengers, 413
Processing rate, 236, 274
Productivity, trends in, 79
Prohibition of airport visitors, 419
Propensity to fly, 51
Protecting critical air transport infrastructure, 360–361
Public–private partnership (PPP), 107
Quick change aircraft, 469
Radar separation standards, 202
initial separation on departures, 202
lateral separation, 202
longitudinal separation, 202
vertical separation, 202
Radio-based navigation and communication, 181, 193
Radio-based radar surveillance, 181, 198
Radio Technical Commission for Aeronautics (RTCA), 205
Rainfall frequency maps, 492
Rainfall intensity-duration curves, 494
Rational method, 496
Ratios of national forecasts, 27
RDSIM, 155
Reagan Washington National Airport, 551
Reasonable/tolerable level of delay, 237
Reduced and short takeoff and landing operations (R/STOL), 94
Reduced vertical separation (RVSM), 643
Reference code
FAA, 320
ICAO, 320
Reference field length, 320
Regional aircraft movement forecast, 55
Regional airport system plan, 118, 140
Regional jets (RJ), 26, 56
Regional/metropolitan integrated airport systems planning, 151
Region-specific airport selection model, 45
Regression analysis and models, 32–34, 57, 66–67
econometric model, 33
multiple linear regression model, 32
regression analysis, 57, 66, 67
regression step-down models, 34
Reinforced concrete pavement, 531–533
Reliever airport, 19, 120
Remote apron, 423
Remote piers, 423
Representative day, 263
Required navigation performance (RNP), 205–212
accuracy; total system error (TSE), 211
equipment failure as part of aircraft airworthiness regulation, 211
navigation accuracy, 212
performance monitoring, 211
RNP routes, 205–212
RNP approaches, 210
Revenue bonds, 14, 158
Revenue passenger miles (RPM), 36–40, 47
Revenues, 9–10
Revenues and expenditures at U.S. airports, 9–11
Rigid pavement, design example, 530–531
Road and Transport Association of Canada, 560
Route choice forecast models, 70, 111, 132
Runoff
collection and disposal of, 469–504
estimation of, 490–496
Runway
gradient, 325
landing length requirement, 317
length, 312–318
orientation, 301–306
safety areas, 330
separation, 299–300, 322–323
sight distance, 334
takeoff length requirement, 318
Runway capacity, 97
Runway capacity cases
allowing approach errors, 252–253
error-free landing, 250–252
handbook, 254–255
Runway capacity definitions, 237–294
hourly saturated capacity, 249
practical capacity, 237
Index

runway acceptance rate, 247
ultimate capacity, 250, 251
Runway capacity factors, 238
aircraft arrival/departure ratios, 238
aircraft fleet mix, 238
airfield layout/configuration, 238
controller work load, 238
fix/sector loading, 238
meteorological conditions, 238
runway exit location, 238
runway occupancy time, 238, 242, 247, 251
Runway capacity model development, 238–241
confidence intervals, 240
frequency analysis, 240
outlier statistical tests, 239
Runway capacity models, 238
conceptual runway capacity model, 238
NASPAC model, 238
Runway capacity optimization, 240
Runway capacity relationship/model, 238, 239
Runway configuration, 238, 254
Runway cross-section, 323–325
Runway exit configuration, 254
Runway length:
calculations, 316–318
design standards
FAA approach category A & B, 329–330
transport airports, 328
requirements, 76–81
landing, 86, 89, 317
takeoff, 86–90, 318
trends in, 76–80
Runway operation scheme, 238
Runway and taxiway safety areas, 336
Runway visual range (RVR), 196
Runways and shoulders, 324–325
Safeguarding regulations versus local planning
evaluation criteria, 390–393
Satellite-based augmentation system (SBAS), 209
Satellite-based GPS procedures, 402
LAAS, 402
LocaIazir performance with vertical guidance
(LPV), 402
WAAS, 402
Satellite-based navigation and communication, 181
Scheduled time of departure (STD), 427
Schiphol Amsterdam Airport, 303, 305, 417, 421, 547, 569, 673–680
Southern California TRACON (SoCal), 204
Secondary airport, 140, 143, 145
Secondary surveillance radar (SSR), 198–199
airborne radar beacon (Transponder), 198–199
interrogator, 198–199
radscape, 198–199
Security considerations in terminal design and
layout, 418–420
Security identification display area (SIDA), 368
Security of AOA, 371
Security of SIDA, 372
Self-liquidating general obligation bonds, 14
Seoul-Inchon International Airport, 611–620
Shannon Free Airport Development Company, 663
Shared value concept, 671–672
governance, 671
spatial integration, 672
sustainability, 672
synergy, 671
Short takeoff and landing (STOL) airports, 297
SIMMOD, 155, 611–620
SIMMOD user groups
Europe (ESUG), 612
North America (NASUG), 612
Simplex transmission, 181
Simulation generic construct
input, 605
logic, 605
output, 605
platform, 605
system representation, 605
Singapore Changi International Airport, 463
Single European Skies Airspace (SESAR), 182
Single-level terminals, 424
Single runway, orientation of, 299, 306–309
Sir Frederick Snow and Partners gate demand
model, 450
Software for drainage design, 507–508
Software for pavement design, 511, 519
Sources of capital financing for U.S. airports,
11–15
Southern California Association of Governments, 43
Space provision in cargo terminals, IATA
recommendations, 479, 485–486
Space requirements in passenger terminals (ACRP),
429–438
Spatially distributed queues, 246
Special facility revenue bonds, 158
Stabilized bases for rigid pavements, 518
Standards for space provision, 429–430
State airport system plan (ASP), 118
State finance, 15
State implementation plan (SIP), 639
Statewide integrated airport systems planning, 151
Statistical analysis and testing, 31
Steady-state condition, 248
Stem Review Report, 131
STOL aircraft, 595–596
STOLports, 595–597
Stopways, 87–90
Structure of revenues, 11
Survey of expectations, 27
System capacity for airport development, 266–273
System dynamics model, 146
Takeoff and landing area (TLOF), 579–592
Tampa International Airport, 423
Taxiway and taxi route dimensions, 582–583
Taxiway capacity, 264
Taxiways
- design, 325–327, 335–340
- fillet dimensions, 336
- minimum separation distances, 327
Terminal approach and departure procedures (TERPS), 201–202
GPS-based area navigation (RNAV), 202
standard approach procedures (STARs), 201
standard instrument departures (SIDs), 201
Terminal apron frontage required, 452–453
Terminal aprons, 340–349
Terminal control area (TCA), 191
Terminal maneuvering area (TMA), 203
3-C planning, 106
Third-party private finance, 14
Third-party survey system (TPSS), 403–404
Thrust to engine weight trends, 80
Tiltrotor aircraft, 598–600
Tiltrotor, productivity, 598–600
Time of concentration, 493
Time of flow, 495
Time-series data base, 24, 28, 34, 35, 56
- correlation, 56
- historic database, 24, 28, 34, 35
Time-space diagram, 242, 248
Tokyo Haneda International Airport, 554
Tokyo Narita International Airport, 547, 556
Top-down forecast, 33
Toronto Lester Pearson International Airport, 447, 681
Touch-and-go operations, 254
Transfer vehicles TV, 459
Transition surface, 310–311
Transportation Research Board (TRB), 602, 635
Transportation Security Administration (TSA), 4–6
Transports, 422, 471–472
Transverse grades on runways and taxiways, 326
TRB airport management system, 359
TRB safety risk management, 359
TRB SMS Guidebook, 359
Trend projection, 28, 56
Trip assignment models, 40, 41
True azimuth, 307
Types of models
- analytical, 604
- descriptive, 603
- numerical, 604
- performance, 603
- prescriptive-normative, 604
UK Civil Aviation Act of 2006, 131
UK Civil Aviation Authority, 129, 130
UK Department for Transport, 130
Unbalanced field performance, 86–89
Unified Soil Classification System (USCS), 511–516
UNILOGIT, 55
Unit load devices, 457–458, 465–469
Unit terminals, 424
Unloading times, minimum for freight aircraft, 469
Unmanned aerial vehicles (UAV), 398
Unstabilized base, 518–519
Urban Transportation Planning System (UTPS), 55
U.S. 14-CFR Security-related regulations, 368
U.S. Air Commerce Act of 1926, 6, 179, 183
U.S. Airmail Act of 1925, 179
U.S. Airport Operators Council International (AOCl), 4
U.S. Airway and Airport Improvement Act of 1982, 17, 109, 116, 119, 183
U.S. Aviation and Transportation Security Act (ATSA) of 2001, 368
U.S. Aviation Security Improvement Act (ASIA) of 1990, 368
U.S. Civil Aeronautics Act of 1938, 180
U.S. Civil Aviation Authority (CAA) of 1938, 180
U.S. Federal Aviation Administration (FAA) of 1958, 180, 183
U.S. Government Performance Review Act (GPRA), 643
U.S. Inter-modal Surface Transportation Efficiency Act (ISTEA) of 1991, 137
U.S. International Air Transportation Competition Act of 1979, 108
U.S. National Aeronautics and Airspace Administration (NASA), 613, 644
U.S. National Airspace System (NAS), 182–183, 201–204, 214
U.S. National Environmental Policy Act (NEPA) of 1969, 637, 643
U.S. National Geodetic Survey (NGS), 400
U.S. National Oceanic and Atmospheric administration (NOAA), 402
U.S. National Plan of Integrated Airport System (NPIAS), 18–20
U.S. National Transportation Safety Board (NTSB), 352
U.S. Office of Management and Budget (OMB), 35
U.S. Post Office Airmail Service contracts, 179
U.S. Transportation Security Administration (TSA) requirements, 359
V/STOL, 65
V1, 87
Vertiports, 598–600
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very sensitive flights</td>
<td>420</td>
</tr>
<tr>
<td>Vision 100 Century of Aviation Act</td>
<td>18</td>
</tr>
<tr>
<td>Visitors, prohibition of</td>
<td>418</td>
</tr>
<tr>
<td>Visual flight rules (VFR)</td>
<td></td>
</tr>
<tr>
<td>VFR conditions</td>
<td>182</td>
</tr>
<tr>
<td>VFR operation</td>
<td>181, 182, 191, 203, 206</td>
</tr>
<tr>
<td>Visual navigation technologies</td>
<td></td>
</tr>
<tr>
<td>aircraft gate self-docking system AGNIS</td>
<td>227</td>
</tr>
<tr>
<td>aircraft gate self-docking system SAFEDOCK</td>
<td>229</td>
</tr>
<tr>
<td>land and hold short operation (LAHSO) lights</td>
<td>223</td>
</tr>
<tr>
<td>obstruction lighting and airport beacons</td>
<td>223</td>
</tr>
<tr>
<td>runway approach lighting system (ALS)</td>
<td>218</td>
</tr>
<tr>
<td>runway centerline and touchdown zone lighting system (RCLS)</td>
<td>219</td>
</tr>
<tr>
<td>runway edge/threshold/end lighting system</td>
<td>220</td>
</tr>
<tr>
<td>runway end identifier light (REIL)</td>
<td>216</td>
</tr>
<tr>
<td>runway precision approach path indicator-PAPI</td>
<td>181, 215</td>
</tr>
<tr>
<td>runway status light (RWSL)</td>
<td>221</td>
</tr>
<tr>
<td>runway and taxiway markings</td>
<td>223</td>
</tr>
<tr>
<td>runway visual approach slope indicator, VASI and T- VASI</td>
<td>181, 214</td>
</tr>
<tr>
<td>taxiway edge/centerline light</td>
<td>222</td>
</tr>
<tr>
<td>Voice communication</td>
<td>181</td>
</tr>
<tr>
<td>VTOL concepts</td>
<td>597–599</td>
</tr>
<tr>
<td>Wait time per passenger</td>
<td>236</td>
</tr>
<tr>
<td>Wake vortex turbulence</td>
<td>97–98</td>
</tr>
<tr>
<td>Washington Dulles International Airport</td>
<td>423, 551, 681</td>
</tr>
<tr>
<td>Waypoint</td>
<td>207</td>
</tr>
<tr>
<td>Wearing course, hot mix asphalt</td>
<td>518</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>maximum landing</td>
<td>93</td>
</tr>
<tr>
<td>maximum ramp</td>
<td>93</td>
</tr>
<tr>
<td>maximum takeoff</td>
<td>93</td>
</tr>
<tr>
<td>zero fuel</td>
<td>93</td>
</tr>
<tr>
<td>Wendell Ford Aviation Investment Act for the 21st Century, 2000</td>
<td>17</td>
</tr>
<tr>
<td>White Paper</td>
<td>130</td>
</tr>
<tr>
<td>Wide-area augmentation system (WAAS)</td>
<td></td>
</tr>
<tr>
<td>GPS satellite data and correction message</td>
<td>212</td>
</tr>
<tr>
<td>precision approach</td>
<td>182, 212</td>
</tr>
<tr>
<td>Wind rose analysis</td>
<td>306–309</td>
</tr>
<tr>
<td>Wing loadings</td>
<td>80–81</td>
</tr>
<tr>
<td>Wing tip clearances</td>
<td>342</td>
</tr>
<tr>
<td>Works Progress Administration (WPA)</td>
<td>15</td>
</tr>
<tr>
<td>Wright brothers</td>
<td>1</td>
</tr>
<tr>
<td>X-ray hold baggage</td>
<td>418, 434, 436</td>
</tr>
<tr>
<td>Zurich International Airport</td>
<td>551</td>
</tr>
</tbody>
</table>