Index

Page references in **bold** indicate tables and references in *italics* indicate figures.

accumulation mode 8
ACGIH
 inhalable fraction and 250
 occupational exposure limits 294
 particle size-selective aerosol sampling criteria 271
respirable fraction curve 271, 272
thoracic fraction curve 271, 272
TWA TLVs for selected substances occurring in workplaces as aerosols 295–296
aerobiology 473
aeroconiscope 477
aerodynamic diameter 4, 27–28, 268
aerodynamic particle sizer (APS) 61, 64, 66, 67, 501, 502
Aerojet-General glass cyclone sampler 485
aerosizer 501
aerosol concentrations 11, 228, 313, 320, 489, 490
aerosol exposure 222–227, 291
 definitions of 225–226
 history 226, 231
 human respiratory tract 223–225
 indices of 313, 320–322
 inhalation 223
 occupational exposure limits 294–297
 sampling frequency 231
 typical cumulative 230, 231
 variability of 227
aerosol fractions, identification of 270
aerosol mass concentration 9
aerosol materials 57–59
aerosol measurement 8–9
aerosol mechanics 22–33
 drag coefficient 22–23
 general equation of motion under the influence of an external force 24–25
 impaction 28–30
 molecular diffusion 30–32
 particle aerodynamic diameter 27–28
 particle drag force and mobility 22
 particle motion without external forces 25–26, 27
 slip 23–24
 turbulent diffusion 32–33
aerosol particle size distribution see particle size distribution
aerosol particle size selection after aspiration see particle size selection after aspiration
aerosol sampler studies, experimental methods 35–70
 assessment of collected aerosol 60–61
 direct (trajectory) method 35–36, 37, 101
 indirect (comparison) method 36–37, 60, 102
 methodology for assessing sampler performance 35–38
 protocols and procedures 61–68
 reference methods 60
 test aerosol generation 50–60
 test facilities 39–50
aerosol samplers
 air and particle movement near single-entry 9, 10
 in the ambient atmosphere, field experience with 575–598
 line and point sink samplers 71–72
 nature of air flow near 71–91
 performance characteristics 9–12
 rebound of particles from outer walls of 170
 for the respirable fraction 359–385
 scaling relationships 38–39
 thick-walled tubes 75–76
 thin-walled slot and tube entries 73–75
aerosol samplers in the workplace 537–573
 converting particle counts to particle mass 549–558
 diesel particulate matter 568–569
 future of workplace aerosol measurement 569–570
 personal and static (or area) sampling 538–539
 relationship between ‘total’ and inhalable aerosol 539–549
 for respirable aerosol fraction 558–562
aerosol sampling
analytical methods 228–229
at high altitude from aircraft 440, 441
direct-reading instruments 318–319, 322, 489–515
framework for health-related 227–233
graph to show the effect of face velocity on the
relationship between collection efficiency and
particle diameter for a filter used for particle
collection during 529
impaction efficiency 98
instrumentation 228
interference effects of external walls 165–173
interferences to 157–191
numerical values for aerosol fractions 274
in occupational settings, summary of time lines of
approaches to 319
particle size-selective criteria for health-related 273,
274
personal sampling 229
sampling strategies 229–232
time lines of approaches to aerosol sampling in
ambient atmospheric environment 322, 323
in working, living and ambient
environments 221–235
aerosol sampling in calm air see calm air sampling
aerosol sampling historical milestones 311–325
ambient atmospheric 319–323
occupational 312–319
aerosol sampling in working, living and ambient
environments
exposure to aerosols 222–227
framework for health-related 227–233
nonhealth-related standards 233–234
aerosol shape analysis system (ASAS) 503, 512
aerosol spectrometers 318, 447, 448–451, 452
aerosol standards see standards
aerosol tunnel sampler 430
aerosols
biological origin 291
classification of 3, 4
classification of workplace 562–568
found in ambient environment 233
as hazards in the environment 222
mathematical model of aerosol behavior near
thin-walled probes 112–113
particle size 3, 4
radioactively labeled test 260
scientific definition 3
standards for see standards
AEROTRAK™ 9000 Nanoparticle Aerosol Monitor
(NAM) 510
AeroTrap™ 479
aethalometer 579
air ejectors 520
air flow
flow rate through samplers 89
near cylindrical blunt sampler facing the wind 83
air flow near aerosol samplers 71–91
blunt samplers
facing the wind 76–81
with orientations other than facing the
wind 82–89
complex sampling systems 89
freestream turbulence 90
line and point sink samplers 71–72
thick-walled tubes 75–76
thin-walled slot and tube entries 73–75
two-dimensional blunt sampling systems 76–80
air moving systems 519–524
pulsation damping 523–524
pumps 520, 521
personal sampling 522–523
air pollution 320
air quality limit values, for UK particle size-selective
aerosol fractions 299–300
air velocity
of an aspirating thin-walled tube placed at an angle
to the freestream 106, 107
axial distributions for flow in aspirating thin-walled
tube facing into the wind 73
air volume, three-dimensional elementary 13, 14
airborne bacteria sampler (ABS) 479, 480
airborne dust
comparison between workers’ exposures as
measured using the IOM personal inhalable
aerosol sampler and the
37 mm closed-face cassette sampler in a nickel
mine 548
CIS personal sampler in a carbon black production
facility 545, 546
summary of historical data as measured by various
methods in a nickel smelter 556
airborne lead, indices of particle size distribution for
exposure at worksites in a large lead smelter 565,
566
airborne particulate matter, Research Triangle Park
Particulate Matter Panel Study 592
alumina 57–58
characteristics of aerosols generated from 59
alveolar deposition efficiency 265, 278
ambient atmosphere
aerosol sampling 319–323, 417–445
classification of aerosols 593–596
field experience with aerosol samplers in the meteorological sampling 440–442 sampling for fine aerosol fractions in 432–440 sampling for total suspended particulate in 425–432 summary of time lines of approaches to aerosol sampling in the 322, 323 ambient atmospheric aerosol limits black smoke and fine particles 297–298 EPA PM NAAQS limit values 298–300 for nonhealth-related aerosols 300–302 ambient carbon particulate monitor 579 ambient environments, framework for aerosol sampling in 221–235 American Conference of Governmental Industrial Hygienists see ACGIH ammonium nitrate 297 analysis of collected samples 60–61, 533–535 chemical analysis 511, 534–535 gravimetric methods 534 handling and transport of samples 533–534 analytical models, for aspiration efficiency in calm air 138–144 Andersen MK-II cascade impactor, modified 28.3 Lpm 566 Andersen MK-II nonviable sampler 455, 456 Andersen N-6 single-stage multi-orifice sampler 480, 481 Andersen viable cascade impactors 481, 482 animal dander 4 apparent aspiration efficiency 10, 35 see also aspiration efficiency area sampling 229 asbestos 302, 315 asbestos fibers 4, 279, 280 NIOSH recommended method for optical detection and counting of respirable 532 asbestosis 302 Aspect 503 aspirating thin-walled tube placed at an angle to the freestream 106 relationships for defining representative sampling 114–115 aspiration 9, 131–156 controlling interference effects during 172 effects of electrostatic forces on 162–164, 165 effects of turbulence on 158–162 experimental conditions for experimental studies of aspiration characteristics of thin-walled cylindrical sampling tubes 99, 100 interferences to aerosol sampling after 173–188 interferences to aerosol sampling during 157–173 options for aerosol particle size selection after 193–217 sampling in slowly moving air 149–154 aspiration in calm air 131–149 aspiration efficiency 10, 35, 93, 95, 97, 132 for an annular slot sampler in air moving very slowly 154 for an aspirating thin-walled tube facing upwards 142, 143, 149 placed at various angles to the freestream 105 for aspirating thin-walled cylindrical sampling tubes facing the freestream 95, 96 in calm air analytical models for 138–144 for upwards-facing aspirating thin-walled cylindrical tubes 135, 136 comparison between measured and calculated aspiration efficiency for an aspirating thin-walled tube placed at various angles to the freestream 108 descriptive modeling of 144–147 determination by direct method 101 determination by indirect method 102 of the human head 238, 239, 244, 245, 246 combined nose and mouth (oronasal) breathing 246, 247 later results for 242, 243 nose breathing 246, 247 of a sampler in calm air, Ter Kuile combination of parameters 148 for sampling in calm air, general function expression 134 set of trends as function of Stokes number for various velocity ratios, bluntness values, body widths and orifice widths 117, 118 for single value of Stokes number for an aspirating thin-walled tube 102 for a spherical blunt sampler in calm air 138, 139 for thin-walled and blunt samplers placed with orifices at an angle of 90 degrees to the freestream 124 180 degrees to the freestream 124, 125 variables for describing 38 see also apparent aspiration efficiency aspiration in moving air 93–130 blunt samplers 116–127 thin-walled tube samplers 94–116 aspiration in slowly moving air 149–154 intermediate conditions 152–154 assessment of collected aerosol see analysis of collected samples asymmetry factor 503
atmospheric aerosols 4
 chemical composition 594–595

B. subtilis, collection efficiency and relative recovery
 for 483, 484
Baby-IOM inhalable aerosol sampler 349, 350, 523
bacteria 4
Bayes, Thomas 557
BCIRA sampler 373
Beijing, China, study to describe outdoor and indoor
 levels of aerosol fractions (PM$_{10}$, PM$_{2.5}$ and
 PM$_1$) 591
Belyaev and Levin model 103
Berner impactor 457
beta-attenuation mass balance 509
beta-attenuation monitor 579
bi-modal particle size distribution, in a coal mine 7
bias maps
 percentage deviation of experimental data for
 aspiration efficiency of an aspirating thin-walled
 tube using two semi-empirical models for
 extended ranges of Stokes number and velocity
 ratio 103, 104
 to illustrate variation of departure of sampled mass
 from the desired ideal as function of particle
 size distribution as represented by MMAD and
 GSD 64, 65
bioaerosol monitoring
 direct-reading aerosol sampling
 instruments 511–513
 fluorescence technology 511–512
 hybrid systems 512–513
 particle size and shape for bioaerosols 512
bioaerosol sampling 473–488
 centrifugal samplers 485–486
 criteria for 477
 early 476–477
 electrostatic precipitation 486
 inertial samplers 477–483, 484
 performance indices 476
 technical issues 474–476
 thermal precipitation 486
 ‘total’ and inhalable bioaerosols 486
bioaerosols 473
 diagram to indicate combination of measurement of
 particle size, particle shape and particle nature
 provides options for rapid detection and
 identification 512
exposure limit values 303
 particle size and shape 512
 standards for 474
biological exposure indices (BEIs) 291

biological recovery efficiency 476
BioSamplerR 482, 483, 484
Bioslide™ 479
BioStageR single-stage bioaerosol impactor 480
bird-strike preventor 422
black smoke 498
 air pollution expressed in terms of 320
 ambient atmospheric aerosol limits of fine particles
 and 297–298
 apportionment of the contributions to BS, PM$_{10}$ and
 PM$_{2.5}$ for the city of Edinburgh from nearby
 and distant sources 581
 comparison between measurements of black smoke
 at a site beside a heavy-traffic urban road
 during October and November in a city using
 three direct-reading instruments together and
 BSI method 579
 European Community (EC) directive limit and guide
 values for 297, 298
 methods for measuring 578–579
 and particle size fractions (PM$_{10}$ and
 PM$_{2.5}$) 580–582
 sampling for 423–425
 summary of comparisons between black smoke and
 PM$_{10}$ in a rural village in the Czech
 Republic 582
 summary of results of side-by-side comparisons of
 data collected at locations in Berlin for TSP
 and 580
 total suspended particulate and 577–580
 blockage ratio 40
blowers 520
blunt samplers 116–127
 axisymmetric facing the wind 121
 bias maps to show percentage deviation of
 experimental data for aspiration efficiency of
 simple disk-shaped 122
 diagram of a simple axisymmetric blunt sampler
 facing the freestream 117
 facing vertically downwards, descriptive modeling of
 aspiration efficiency 146
 facing the wind 76–81
 impaction model for a blunt sampler facing the
 freestream 116–120
 mathematical and numerical approaches to 125–126
 model for disk-shaped sampler facing the wind 119
 orientation-averaged conditions 126–127
 with orientations other than facing the wind 82–89
 cylindrical blunt samplers 82–83
 of simple shape facing the wind, experimental
 investigations 120–123
 two and three-dimensional mathematical studies 126
see also cylindrical blunt samplers; disk-shaped blunt samplers; spherical blunt samplers
blunt sampling systems
 axially symmetric 80–81
two-dimensional 76–80
boundary layers 16–18
breathing zone 229–230
British smoke shade sampler (BSS) 424
British standard gauge 418, 419, 576
British Standards Institution (BSI) 409
Brownian motion see molecular diffusion
BSI deposition gauge 418, 419, 576
bubble flowmeter 525–526
bulk powder material, dry dispersion 52–56
Button personal inhalable aerosol sampler 347–348, 349, 486, 547
cadmium, exposure to aerosols containing 291
calm air, definition of 150–152
calm air chambers 46, 47
calm air sampling 45–48
 Agarwal and Liu criteria for 148
 by thin-walled probes, descriptive model 144
 conditions corresponding to, based on Ogden’s theory 151
 criteria for representative 147–149
 Levin expression for aspiration efficiency 140
 using cylindrical tubes 141
carbon, fixed and organic 297
Carl Zeiss konimeter 360, 361
cascade centipeter 450
cascade cyclones 466–467
cascade impactors 318, 466–467, 481, 482, 533
 Casella Mk1 454, 455
 earlier 454, 455
 inversion procedures for 463–465
 outline 452–454
 personal 459–462
 for stack sampling 462, 463
 static cascade impactor-based samplers 454–459
 testing of 563
cassettes 334, 533
CATHIA–T static thoracic aerosol sampler, collection efficiency 390, 391
cement dust 4
CEN, sampler testing guidelines 68
centrifugation, aerosol particle size selection after aspiration 201–205
centrifuges 450, 485–486
CERL vertical dust gauge 422–423, 576, 577
chemical analysis, of collected samples 534–535
CIP10 personal samplers 336, 337, 341, 382, 389
collection efficiency 383
design of 390
performance of 342
CIP10–T personal thoracic aerosol sampler, collection efficiency 390, 391
CIS personal sampler see conical inlet sampler
Climet, particle counting instrument 500
closed-face cassette sampler (37 mm) 334, 540, 541
 comparison between workers’ exposures to airborne dust as measured using 543
 airborne lead as measured using 542, 543
 overall airborne dust as measured using 542
coal dust 4
coal industry, respirable aerosol exposures in 549–552
coal mine
 bi-modal particle size distribution in 7
dust exposures 560
coal rank, relationship between MNI and 551, 552
coal-fired power station, comparison between results obtained using two versions of the Mini-RAM sampler and the 10-mm nylon personal respirable aerosol sampler 561, 562
coarse aerosol fractions
 particle size-selective criteria for 237–254
 personal samplers for 333–351
 static (or area) samplers for 327–333
crude aerosols, sampling in workplaces see sampling for coarse aerosols in workplaces
crude dust method 115
crude mode 8
crude ‘nuisance’ aerosols
 indices for 322
 sampling for 417–423
collection efficiency 418
collection media 526–533
 choices and applications 531–532
 filters 526–527
 filtration efficiency 527–528
 mass stability 528–531
 roles of various particle collection mechanisms 528
 substrates 532–533
colony forming units (CFUs) 316
combustion-related aerosols 394–395
comparative studies
 summary of results for 37 mm closed-face plastic cassette sampler for ‘total’ aerosol versus the IOM personal inhalable aerosol sampler 543, 544
 summary of results for various samplers versus the IOM personal inhalable aerosol sampler 546
 workers’ exposures to overall airborne dust as measured using the IOM personal inhalable...
comparative studies (continued)
aerosol sampler and the CIS personal sampler in a carbon black production facility 545, 546
complaints, determining likelihood of complaints for coarse dust/grit particles for daily levels measured using a dust deposit gauge 234
condensation particle (nuclei) counter (CPC) 469, 504–505
conical inlet sampler 336, 347, 545
conicycle 383–384
Conifuge 450
continuous ambient particulate monitor 510
cooking related aerosols 4
Coulter counter 61, 239
countable biological agents 474
CPM3 static sampler 368
critical orifice 525
culturable biological agents 474, 475
cumulative distribution, particles 5, 6
cumulative log-normal particle size distribution 7
Cunningham slip correction factor 24
cyclone-based sampling head, 16.7 Lpm 433, 434
cyclones 202–204, 316, 485
2 Lpm conductive plastic cyclone 375
2.2 Lpm respirable dust cyclone 375
2.5 Lpm respirable aluminum cyclone 375
10 mm nylon (Dorr-Oliver) single-inlet 368, 369
penetration as function of particle aerodynamic diameter 370, 371
wind speed dependency 369
GK2.69 cyclone-based personal sampler 375
respirable fraction samplers 368–375
results for penetration versus particle aerodynamic diameter for cyclone used for aerosol sampling 204
reverse-flow 202, 203
side-by-side field studies results 559
thoracic fraction samplers 386–387
cylindrical blunt samplers 82–83
facing away from the freestream, streamline pattern expected 84
with a slot entry facing the wind, typical smoke tracer visualisation 84
two-dimensional, general form of the streamline pattern near 82
see also blunt samplers; disk-shaped blunt samplers; spherical blunt samplers
cylindrical thin-walled probes
facing the wind, sampling errors associated with particle rebound from external sidewalls of 171, 172
limitations of sampling with 404
Danish personal passive aerosol samplers 355, 356
Darwin, Charles, on bioaerosol sampling 476, 596
DataRAM 4™ 497
Davies criterion for representative sampling 148
Dean number 180
deposition, inside thin-walled tube at orientations other than forward-facing 184–185
deposition of inhaled aerosols in the alveolar region 264–265
studies of regional 255–268
of very fine and ultrafine aerosols 266–268
deposition losses
inside a bent sampling tube 180–181
inside a thin-walled tube facing into the wind 181–184
deposition velocity 177
for particles deposited inside a straight cylindrical tube by turbulent diffusion 179
in a straight cylindrical tube as a function of dimensionless particle relaxation time 179, 180
diaphragm pumps 520, 521
diesel particulate matter (DPM) 568–569
sampling cassette for 395
differential mobility analyzer (DMA) 281, 504
diffusion
aerosol particle size selection after aspiration 211–212, 213
deposition in flow through screens 212, 213
deposition from laminar flow through tubes 211–212
molecular 30–32
turbulent 32–33
diffusion batteries 467–469
dilution, sampling probes for stack sampling 413–414
direct method 35–36, 37, 101
direct-reading aerosol sampling instruments 318–319, 322, 489–515
bioaerosol monitoring 511–513
condensation nuclei/particle counters 504–505
electrical particle measurement 503–504
mechanical aerosol mass measurement 505–509
nuclear mass detectors 509–510
optical aerosol-measuring instruments 490–503
surface area monitoring 510–511
direct-reading stack-monitoring instruments 415
diseases
associated with particle inhalation 289
beyond the respiratory tract 291–292
of the respiratory tract 290–291
disk-shaped blunt samplers
effects of freestream turbulence 161
Index 605

facing the wind and exposed to aerosols of fused alumina, plot of experimental data 169, 171
photograph of the flow pattern near 81
see also blunt samplers; cylindrical blunt samplers; spherical blunt samplers
Dorr–Oliver nylon cyclone (10 mm) 558
drag coefficient 22–23
dry-dispersed dusts 52–56
ducts
location of sampling points 404, 405
sampling in 403–416
dust
comparison between workers’ exposures as measured using the IOM personal inhalable aerosol sampler and the seven-hole personal sampler 547
suggested factors to convert personal exposures to ‘total’ aerosol 545
dust deposit gauges 418, 419, 576
experimental results for performance of 420
dust deposition (dustfall) 300, 418
dust deposition limit values 300, 301
DUSTTRAK™ 497
dynamic shape factor 28, 29
dynamical limit of Levin 140, 149
dynamical sampling velocity 133
electret sampler 547
electret-based passive aerosol samplers 355
electric charge effects 59–60
electric single particle aerodynamic relaxation time analyzer 501
electrical aerosol analyzer (EAA) 503, 504
electrical low pressure impactor (ELPI) 457, 593
electrical mobility spectrometers 503
electrical particle measurement 503–504
electronic balances, summary of LOD 530
electrostatic effects, interferences after aspiration 186–188
electrostatic forces
on aspiration 162–164, 165
effects on particle sampling under practical conditions 164
effects on sampler aspiration efficiency 164, 165
electrostatic precipitation 213–214
elemental carbon, measurement of 569
elutriation 194–197
horizontal 195–197, 316
vertical 194–195
EN 13205 sampler testing protocol 63–64, 352, 537–538
entry efficiency (apparent aspiration efficiency) 10

EPA
16.7 Lpm EPA generic reference sampling system for PM 438
16.7 Lpm EPA well impactor ninety-six (WINS) 435, 437
inlets and sampling systems used in the 1983/984 EPA intersampler comparisons 585
PM NAAQS limit values 298–300
sampler testing guidelines 68
equivalent projected area diameter 4
equivalent sulfidic fraction (ESP) 567
equivalent surface area diameter 4
equivalent volume diameter 4
exponential size distribution parameter 550
exposure limit values 289–307
bioaerosols 303
fibrous aerosols 302–303
special cases 301–305
ultrafine aerosols 304–305
exposure limits 232–233
health-based exposure limits 293
no observed adverse effect level 232
regulatory exposure limits 293–294
see also occupational exposure limits (OELs)
exposure rate parameter 241
exposure to aerosols see aerosol exposure
external walls, aerosol sampling interference effects 165–173
extrathoracic deposition, of inhaled aerosols 261–262, 263
extrathoracic fraction 275–276
see also thoracic fraction
fans 520
Federal Reference Method (FRM) 434, 575
fibrous aerosol monitor (FAM) 500
fibrous aerosols 500
exposure limit values 302–303
particle size-selective criteria for 279–280
results for deposition of 265–266
fibrous filters 526–527
field experience with aerosol samplers in the ambient atmosphere 575–598
black smoke and particle size fractions (PM 580–582
‘nuisance’ dust 576–577
personal exposures to PM and PM 589–592
PM 589
PM 585–589
transition to particle size-selective sampling 582–585
TSP and black smoke 577–580
field experience with aerosol samplers in workplaces 537–573
diesel particulate matter 568–569
gravimetric mass sampling 558–559
personal and static (or area) sampling 538–539
for respirable aerosol 558–562
field studies, results comparing aerosol concentrations as measured by personal and static (or area) sampling for various samplers and indices of concentration 538
filter holders, open-face 328
filter plane 9
filters
 collection media 526–527
 summary of LOD for filtration, by porous foam media 197–201
filtration efficiency, collection media 527–528
fine aerosol fractions
 criteria for 268–281, 282
 thoracic and respirable aerosol fractions 273–275
 very fine aerosol fractions 278–279
extrathoracic aerosol fraction criteria 275–276
historical overview 268–271, 272
 particle size-selective criteria for 255–287
 tracheobronchial and alveolar aerosol fractions 276–278
fine dust method 115
fine and ultrafine particles, efficiency of 266
flow patterns 16, 17
flow rate 524–526
 flow control 525
 flow measurement 525–526
flow separation 18, 19
flow stability 84–86
flow through screens, deposition by diffusion in 212, 213
flows, separation and reattachment 18, 19
fluid mechanics 13–22
 boundary layers 16–18
 equations of fluid motion 13–15
 potential flow 20
 stagnation 18, 19
 streamlines and streamsurfaces 15–16
 turbulence 20–22
fluidised-bed generators 55–56, 57
fluorescence technology 511–512
fluorescent aerodynamic particle sizer (FLAPS) 511
fly ash 4
foam media 198
 calculated penetration 201
 nominal porosity 200
 penetration of a cylindrical plug of porous plastic foam media 199
forward-scattering instrument 499
freestream turbulence, effects on aerosol samplers 90
frequency distribution, particle size distribution 6
friction velocity 178
Froude number \((Fr)\) 26
full-shift true breathing zone sampler 351
fumes 4
 suggested factors to convert personal exposures to ‘total’ aerosol 545
Gathercole model 554
geometric diameter 4
geometric standard deviation (GSD) 64, 65
granular bed filters 527
Gravicon 328
gravimetric dust sampler, 2.5 Lpm MRE (Mines Research Establishment) Type 113A 166
gravimetric mass sampling 558–559
gravimetric methods
 analysis of collected samples 534
 EPA guidelines 534
gravimetric samplers
 for inhalable aerosol 317
 for respirable fraction 316–317
 for total aerosol 313–314, 317
gravitational deposition of particles 175, 177
gravity angle 185
greases 533
Greenberg–Smith impinger 362, 363
GS-1 conductive plastic cyclone 374
GS-3 respirable dust cyclone 370, 372
hard rock mining, respirable aerosol exposures in 552–554
Harvard impactor, field comparisons for side-by-side reference sampler for PM10 and chosen ‘local’ samplers for PM10 587, 588
HAZ-DUST 1 497, 498
‘Hazard’ device 489
Health and Safety Executive (UK), occupation exposure limits 294
helmet-mounted personal samplers 351
Hering low pressure impactor 457
Hexhlet horizontal elutriator-based respirable aerosol sampler 364, 365
Hi-Vol sampler for PM10 434, 436
Higgins–Dewell sampler 373, 374, 558
Hirst spore trap 479
horizontal dust deposit gauges 418, 576, 577
horizontal elutriation 195–197
 idealised uniform flow 196
 penetration of rectangular horizontal elutriator 197
 realistic parabolic laminar flow 196
horizontal elutriator-based 2.5 Lpm MRE static
 respirable aerosol sampler 367
horizontal elutriators 316, 364–368, 448–450
horizontal thin-walled probes 146
hot processes, suggested factors to convert personal
 exposures to ‘total’ aerosol 545
human head, aspiration efficiency of the see aspiration
efficiency, of the human head
human health, risk of aerosols to 222
human respiratory tract 223–225
 alveolar region 289
 diseases of 290–291
 extrathoracic region 289
 regions of and deposition of inhalation particles
 during inspiration and expiration 256, 257
 regions of 289
 tracheobronchial region 289
 ‘Hurricane’ sampler 554
hybrid systems, bioaerosol monitoring 512–513
idealised test aerosols 50–52
impaction 28–30
 aerosol particle size selection after
 aspiration 205–211
 conventional 205–208
 low pressure and micro-orifice 209
 virtual 209–211
impaction efficiency 29
 for aerosol sampling 98
 for an aspirating thin-walled cylindrical sampling
 tube 98, 99
 for an aspirating thin-walled cylindrical sampling
 tube from experiments using direct method by
 Belyaev and Levin 101
 for an aspirating thin-walled tube facing the
 freestream
 comparison between the experimental data of
 Zenker and the theoretical calculations of
 Volushchuck and Levin and Rüping 112
 comparison between the theoretical calculations of
 Vitols and Belyaev and Levin 111
impaction models
 for a blunt sampler facing the freestream 116–120
 for orientations other than forward-facing 105–109
 for a thin-walled tube facing the freestream
 96–98
impactor-based sampling heads, for collecting fine
 atmospheric aerosol fractions 433
impactors
 2 Lpm multi-orifice-size respirable aerosol 377
 multi-orifice-size parallel impactor 376, 377
 respirable fraction samplers 376–377
 single-stage 478–481
 thoracic fractions samplers 387–388
 impingers 314, 361–362, 363, 482–483, 484
 in-stack sampling probe 410
 incident plane 9
indirect method 36–37, 60, 102
inertial samplers
 bioaerosol samplers 477–484
 impingers 314, 361–362, 363, 482–483, 484
 passive samplers 478
 single-stage impactors 478–481
inertial spectrometers 450–451, 452
inhalability 249
 at very low wind speeds 244–247
 early experimental measurements of 237–241
 Armbruster and Breuer 238, 239
 Ogden 238, 239
 Vincent and Mark 239, 240
 experimental studies 237–247
 later experimental results for aspiration efficiency of
 human head for various wind speeds 240, 241
 physical basis of 241–242
 for very large particles 242–244
inhalability curves
 for calm air 251
 showing original ISO curve and the original ACGIH
 curve 249
 for various wind speeds 251
inhalable aerosol
 personal samplers for coarse aerosol
 fractions 344–351
 relationship between ‘total’ aerosol and 539–549
 sampling for total suspended particulate in the
 ambient atmosphere 431–432
 side-by-side comparative studies of ‘total’ aerosol
 and 540–547
 static samplers for coarse aerosol fractions
 328–333
inhaled aerosol exposure concentrations, example of
 the history in a large nickel smelter from 1960
 to 1979 557
inhaled aerosol exposures, in the nickel
 industry 554–558
inhaled aerosol samplers, analysis of performance
 data for 352–354
inhaled fraction 252–253, 317
 criteria for 248, 249–251
inhalation 223
inhalation experiments 259
inlet sampling efficiency 476
INSPEC inertial aerosol spectrometer 451, 452
instrumentation, aerosol sampling 228, 309–515
instruments
 direct-reading 322, 489–515
 stack-monitoring 415
optical aerosol-measuring instruments 490–503
interception 30
INTERCOMP2000 study 593, 594
interferences to aerosol sampling after
 aspiration 173–188
in complicated systems 186
deposition inside thin-walled tube at orientations
 other than forwards-facing 184–185
deposition losses
 inside a bent sampling tube 180–181
 inside a straight sampling tube 173–179, 180
 inside a thin-walled tube facing into the
 wind 181–184
electrostatic effects 186–188
rebound of particles from internal walls 185–186
interferences to aerosol sampling during
 aspiration 157–173
electrostatic forces 162–164, 165
external wall effects 165–173
turbulence 158–162
intermediate conditions 152–154
intersampler comparisons, summary of locations 585, 586
'inverted Frisbee' deposit gauge 420, 421, 576, 577
IOM 2 Lpm personal inhalable aerosol sampler 344, 345, 486
 performance in calm air 345, 346
 performance in slowly moving air 346, 347
 performance for various windspeeds 345, 346
IOM 3 Lpm static inhalable aerosol sampler 330–332
 complete assembled instrument 331
 performance of 332
 sampling head 331
IOM 30 Lpm sampler 431, 432
IOM personal inhalable aerosol samplers 379, 530, 540, 541
 comparison between workers’ exposures to
 airborne dust as measured using 541, 543
 airborne lead as measured using 541, 542
 overall airborne dust as measured using 541, 542
 scaling relationships for the modified, low flow rate
 version 350
 summary of LOD and LOQ for different
 combinations of filter and cassette 531
IOM personal inhalable dust spectrometer (PIDS),
 cumulative particle size distributions obtained
 using 565
IOM static inhalable dust spectrometer (SIDS) 458
 isokinetic sampling 74, 114–116, 237
Johannesburg curve 269
konimeters 312, 314, 360, 361, 552–554
 comparison between standardised konimeter counts
 and respirable silica concentration 555
 field comparisons between four different
 models 553
Kuile, Ter 148–149
layer efficiency 198
lead, exposure to aerosols containing 291
Levin, aspiration efficiency of a point sink in calm
 air 139–140
light attenuation-based monitors in stack sampling,
 single-pass and two-pass 493
light extinction 491
light scattering 491
light scattering photometry 494–498
limit of detection (LOD) 60, 529, 530–531
limit of quantification (LOQ) 60, 529, 531
limit values 289–307
 aerosol-related health effects 289–292
 ambient atmospheric aerosol limits 297–301
 bioaerosols 303
 fibrous aerosols 302–303
 for nonhealth-related aerosols 300–302
 occupational exposure limits (OELs) 292–297
 standards setting 292
 ultrafine aerosols 304–305
limiting trajectory 28–29
line and point sink samplers 71–72
Litton large volume electrostatic air sampler
 (LVAS) 486
Liu–Pui inlets 433, 435, 436
living environments, framework for aerosol sampling
 in 221–235
log-normal particle size distribution 6
long-running thermal precipitator (LRTP) 315, 362, 550
lung diseases, associated with exposure to
 bioaerosols 303
lung, the, summary of morphological and physiological
 data for 224
Maddox sampler (aeroconiscope) 477
Marple personal cascade impactor 460–461, 462, 563
 eight-stage 481, 482
 set of typical cumulative particle size distributions using 564
Marple-type miniature eight-stage cascade impactor 559
Marple-type personal cascade impactors 533
mass balances 506–508
mass measurement 505–509
mass median aerodynamic diameter (MMAD) 6, 64, 65
mass number index (MNI) 551
 relationships with other aspects of airborne dust in coal mines 552
mass stability, collection media 528–531
maximum exposure limit (MEL) 294
Maxwell, James Clerk 491
mechanical mobility 22
membrane filters 527
mesothelioma 302
meteorological sampling 440–442
metering dust generator 55, 56
method of tangents 503
micro impinger 483
micro-orifice impactors 209
micro-orifice uniform deposit impactor (MOUDI) 457, 458, 461
midget impinger 314, 361–362, 483
mine dust sampling, cotton-wool filters 313
Mini-Ram light scattering based instrument 561
Miquel sampler 479
Mist 4
 suggested factors to convert personal exposures to ‘total’ aerosol 545
MMAD (mass median aerodynamic diameter) 6, 64, 65
Model 3040 diffusion battery 467
modified Andersen MK-II nonviable sampler 457
molecular diffusion 30–32
MOUDI, 2 Lpm personal sampler 457, 458, 461
mouth breathing 256, 275
moving air 40–45
 near a point sink, particle trajectories for 110
 streamline patterns 72
MPG II, 46 Lpm (sampler) 364
MRE respirable dust sampler 364, 367, 550
 comparison between output from two direct-reading optical instruments and respirable aerosol measured gravimetrically using the 561
MRE Type 113A horizontal elutriator-based static respirable aerosol sampler 366
multi-inlet respirable aerosol sampler 372
multi-orifice-size parallel impactor 376
 penetration as function of particle aerodynamic diameter 377
multi-stage liquid impinger (MSLI) 483
multiple-jet single-stage impactors 480
Nano-MOUDI 457
Nanometer Aerosol Sampler (NAS) 439, 440
nasal deposition, calculated results for efficiency 276
National Ambient Air Quality Standards (NAAQS) 298, 299
NBS dust feeder 55, 56
next generation pharmaceutical impactor (NGI) 459, 460
nickel industry, inhalable aerosol exposures in 554–558
nicotinamide adenine dinucleotide phosphate [NAD(P)H] 511
nonculturable organisms 474, 475
nonviable organisms 474
nose breathing 256
nuclear mass detectors 509–510
nucleation mode 8
Nuclepore® filter 527, 528
‘nuisance’ dust, samplers in the ambient atmosphere 576–577
null-type probes 411, 412
nylon cyclone samplers 163, 523
occupational aerosol sampling 312–319
aerosol exposure indices 313
gravimetric samplers for respirable fraction
 gravimetric samplers 316–317
 sampling strategies and philosophies 312–313
 sampling to measure aerosol particle size distribution 317–318
 total and inhalable aerosol gravimetric sampler 317
occupational exposure limits (OELs) 233, 292–297, 539
 for aerosols 294–297
 health-based exposure limits 293
 regulatory exposure limits 293–294
tables of 292
see also exposure limits
occupational exposure standard (OES) 294
opacity monitors 494
open-face 37 mm plastic cassette 334–335
open-face filter holders 328
open-plate deposition (OPD) 477
optical aerosol-measuring instruments 490–503
 light scattering photometry 494–498
optical aerosol-measuring instruments (continued)
 optical particle counters 498–501, 502
 particle size and shape 503
 physical background 490–492
 transmission/extinction monitoring 492–494
optical and gravimetric aerosol samplers, workplace
 comparisons between 559–562
optical microscopy 469–470
optical particle counters 498–501, 502
optical particle sizing and counting 499
optical processes, aerosol particle size selection after
 aspiration 215
optical scattering instantaneous respirable (dust)
 indication system (OSIRIS) 367, 495
ORB (overall respirable burden) sampler 317, 328–330
 smoke tracer visualisation of flow near 87, 89
 orifice size coefficient 141
overall sampling efficiency (sampling effectiveness) 10
Owens jet sampler 315, 361, 362
P. fluorescens, collection efficiency and relative
 recovery for 483, 484
Paik and Vincent model, measurements of aspiration
 efficiency for thin-walled tubes 103–104
paper thimble-type collectors 314
parallel impactors 465–466
particle aerodynamic diameter 4, 27–28, 268
particle count samplers 314–316
particle counts
 converting to particle mass 549–558
 for ultrafine aerosols 594
particle drag force and mobility 22
particle extinction coefficient 491, 492
particle mass, converting particle counts to 549–558
particle motion
 general equation of motion under the influence of an
 external force 24–25
 without external forces 25–26
particle removal efficiency 476
particle size
 and chemical species fractions, summary
 presentation of distributions of 568
 distribution analysis, by microscopy 469–470
 measurement and chemical speciation 566–568
 statistics 5–8
particle size classification, diagram to illustrate
 principle of aerosol 449
particle size distribution 5, 6, 7, 8
 of ambient atmospheric aerosols 593–594
 sampling for the determination of 317–318, 447–472
of workplace aerosols 562–565, 566
particle size distribution parameter 551, 552
particle size fractions (PM$_{10}$ and PM$_{2.5}$), black smoke
 and 580–582
particle size selection after aspiration 193–217
 centrifugation 201–205
 diffusion 211–212, 213
 electrostatic precipitation 213–214
 elutriation 194–197
 filtration by porous foam media 197–201
 impaction 205–211
 optical processes 215
 thermal precipitation 214–215
particle size-selective criteria for coarse aerosol
 fractions 237–254
 experimental studies of inhalability 237–247
 inhalable fraction 247–252
particle size-selective criteria for fine aerosol
 fractions 255–287
 extrathoracic aerosol fraction 275–276
 fibrous aerosols 279–280
 history of 268–272
 international harmonisation of sampling criteria 284
 overview 282–284
 studies of regional deposition of inhaled
 aerosols 255–268
 thoracic and respirable aerosol fractions 273–275
 tracheobronchial and alveolar aerosol
 fractions 276–278
 ultrafine aerosols 280–281, 282
 very fine aerosol fractions 278–279
particle size-selective criteria for the inhalable
 fraction 247–252
particle size-selective sampling 582–585
 criteria summary 252, 283, 284
particle velocity correction function 153
particles
 aerosol concentration 11, 228, 313, 320
 charge conditions 186
 composition and health effects 228
 concentration units of airborne 271
 converting particle counts to particle mass 549–558
 cumulative distribution 6
 equivalent projected area diameter 4
 equivalent surface area diameter 4
 equivalent volume diameter 4
 frequency distribution 6
 geometric diameter 4
 ICRP model of particle deposition during inhalation
 and exhalation 256, 257
 log-normal particle size distribution 6
 monodisperse 5
options for aerosol particle size selection after aspiration 193–217
particle size-selective criteria for the inhalable fraction 247–252
penetration in laminar flow through vertical cylindrical tube associated with the Saffman lift force 175, 176
penetration through sampling tubes 187
penetration through straight cylindrical tubes 175
polydisperse 5
rebound from internal walls 185–186
size statistics 5–8
turbulent deposition of iron and aluminum in glass and brass tubes 178
particulate matter (PM) 299, 395, 407–408, 425, 568–569, 592
passive aerosol samplers
Danish personal 355, 356
electret-based 355
inertial samplers 478
sampling for coarse aerosols in workplaces 354–356
Patterson-graticule 318
PCI (precision cascade impactor) 459, 566
penetration
for deposition by diffusion 212
in a single screen 213
for various Dean numbers 182
permissible exposure limits (PELs) 248, 294
personal aerosol sampling 229
personal cascade impactors 459–462
personal DataRAM 4™ 497
personal environmental monitor (PEM) 388, 392
personal inhalable aerosol samplers, comparison between performance of the 2 Lpm IOM and 0.3 Lpm Baby-IOM 350
personal inhalable dust spectrometer (PIDS), 2 Lpm IOM 459, 461
personal samplers
2 Lpm conical inlet sampler 341
2 Lpm personal closed-face 37 mm plastic cassette 339
2 Lpm personal open-face 25 mm plastic cassette 340
2 Lpm personal open-face 37 mm plastic cassette 339
2 Lpm seven-hole personal sampler 341
2 Lpm single-hole personal sampler 340
CIP10 336, 337
closed-face 37 mm plastic cassette 334
for coarse aerosol fractions 333–351
inhalable aerosol 344–351
total aerosol 333–344
conical inlet sampler 336
fused alumina dust deposits on external surface 166, 167
open-face 37 mm plastic cassette 334–335
performance in calm air 343
PERSPEC 337–338
seven-hole sampler 335–336
single-hole sampler 335
for total aerosol
full-shift true breathing zone sampler 351
helmet-mounted sampler 351
personal sampling 229
personal sampling pumps 522–523
personal and static (or area) sampling, field experience with aerosol samplers in workplaces 538–539
PERSPEC personal samplers 337–338, 396
performance of the 2 Lpm 342
phase contrast microscopy (PCM) method 279–280
piezoelectric mass balance 506–508
Pilat source test cascade impactor Mark I 462
Pilat source test cascade impactor Mark III 464
piston pumps 520, 521
plastic samplers, deposition of particles inside 187
PM_{2.5}
apportionment of the contributions for the city of Edinburgh from nearby and distant sources 581
measurement of 589
personal exposures to 589–592
sampling for fine aerosol fractions in workplaces 391–393
summary of averaged results for PM_{10} ambient aerosol concentrations and 594
summary of results for a number of Canadian cities 595
PM_{10} 321
apportionment of the contributions for the city of Edinburgh from nearby and distant sources 581
at kerbside of a busy road junction in Sunderland, comparisons between samplers for 588
averaged results for PM_{2.5} ambient aerosol concentrations and 594
comparisons between black smoke and PM_{10} in a rural village in the Czech Republic 582
criterion 585–589
fraction 575
indoors mass concentration for both PM_{10} and respirable (cyclone) samples 590, 591
mass concentration as function of respirable (cyclone) mass concentration for both indoors and outdoors 590, 591
personal exposures to 589–592
relationship between TSP concentrations and 584
PM$_{10}$ (continued)

results for a number of Canadian cities 595
results of side-by-side comparisons of PM$_{10}$, PM$_{15}$
and TSP at six locations in the US 583, 584
PM$_{15}$, results of side-by-side comparisons of PM$_{10}$,
PM$_{15}$ and TSP at six locations in the US 583, 584

‘Pneumoconiosis Field Research’ (PFR) 231, 549–550
summary of respirable dust measurements made in
British coal mines 551
point sink in calm air, general pattern of streamlines
and particle trajectories near 140
point sink samplers, line and 71–72
pollens 4
polystyrene latex (PSL) 500
porous foam pre-selector stage of the prototype 30
Lpm IOM thoracic aerosol sampler, performance of 437
porous plastic foam filter samplers 67, 378–383
penetration as function of particle aerodynamic
diameter 378, 379
prototype designed for applications in sampling respirable welding fume 379, 380
prototype penetration as function of particle aerodynamic diameter 380
samplers for the thoracic fractions 388–391
for TEOM ambient particulate monitor 381
porous plastic foam-based 2 Lpm sampler for
simultaneous collection of inhalable thoracic and respirable aerosol 396
porous plastic foam-based modified 2 Lpm IOM
sampler for thoracic aerosol sampler 389
porous plastic foam-based modified CIS sampler for
PM$_{2.5}$ aerosol 392
PortacountR 505, 506
Porton graticule 469–470
potential flow 20
precision bands 283–284
precision cascade impactor (PCI) 459
pulsation damping 523–524
pumps 519–536
air moving systems 519–524
analysis of collected samples 533–535
collection media 526–533
flow rate 524–526
personal sampling 522–523
rapid acquisition method 67
rebound coefficient 172
for a thin-walled cylindrical sampling tube facing
the wind 173
reference methods 60
reference worker 225
regional deposition of inhaled aerosols 255–268
alveolar region results 264–265
experiments for studying 259–260
extrathoracic deposition results 261–262
fibrous aerosols results 265–266
framework 255–258
theories, simulations and models 258–259
total deposition results 260–261
tracheobronchial deposition results 262–264
very fine and ultrafine aerosols results 266–268
regression analysis, relationship between standardized
konimeter data and corresponding gravimetric data
for respirable silica 555

Respicon personal sampler 397–398
respirable aerosol exposures
in coal industry 549–552
in hard rock mining 552–554
respirable aerosol monitor (RAM) 496–497
respirable aerosols 359
respirable combustible dust (RCD) method 568
respirable fibers, sampling for 385
respirable fraction 269
aerosol samplers for 359–385
definition 273
gavimetric samplers for the 316–317
respiratory tract see human respiratory tract
reticulated polyurethane foam media 198
retrospective exposure assessment 311
Reuter centrifugal sampler (RCS) 485
Reynolds, Osborne, Sir 21
Reynolds number (Re) 15, 16, 18, 21
rotameter 525
rotary vane pumps 520, 521
rotating-table generators 53–54, 55
Rotorod sampler 428, 429, 478
Royco instruments 499

saddle point 132
Safety in Mines Light Scattering Instrument
(SIMSLIN) 367, 495, 561
Saffman lift force 175, 176
sample equilibrium system (SES) 588
samplers
field experience for respirable aerosol 558–562
line and point sink 71–72
performance characteristics 9–12
rebound of particles from external surfaces of 168
for ’total’ and inhalable bioaerosol 486
samplers with circular slit inlet, effect of freestream
turbulence on 162
samplers for the respirable fraction 359–385
cyclones 368–375
early samplers 360–364
horizontal elutriators 364–368
impactors 376–377
porous plastic foam filter samplers 378–383
sampling for ‘respirable’ fibers 385
samplers for the thoracic fractions 385–391
cyclones 386–387
impactors 387–388
porous plastic foam filter samplers 388–391
vertical elutriators 386, 387
samples
analysis of collected 533–535
handling and transport 533–534
sampling
for black smoke 423–425
to measure aerosol particle size
distribution 317–318
sampling for aerosols in the ambient
atmosphere 417–445
black smoke 423–425
course ‘nuisance’ aerosols 417–423
fine aerosol fractions 432–440
meteorological sampling 440–442
total suspended particulate 425–432
sampling for bioaerosols see bioaerosol sampling
sampling for coarse aerosols in workplaces 327–358
analysis of performance data for inhalable aerosol
samplers 352–354
passive aerosol samplers 354–356
personal samplers 333–351
static (or area) samplers for coarse aerosol
fractions 327–333
sampling for the determination of particle size
distribution 447–472
aerosol spectrometers 448–451, 452
cascade impactors 452–465
cascade cyclones 466–467
cascade impactors 452–465
diffusion batteries 467–469
microscopy 469–470
parallel impactors 465–466
rationale 447–448
sampling efficiency 359
sampling for fine aerosol fractions in the ambient
atmosphere 432–440
PM$_{2.5}$ 435–438, 439
PM$_{10}$ 432–434
ultrafine aerosols 439–440
sampling for fine aerosol fractions in
workplaces 359–402
PM$_{2.5}$ 391–393
respirable fraction 359–385
simultaneous sampling for more than one aerosol
fraction 395–398
thoracic fraction 385–391
thoracic particle size selection for fibrous
aerosols 393–394
very fine aerosols 394–395
sampling heads, performance of 435
sampling in perfectly calm air 131–149
experimental studies for 135–138
qualitative description 131–134
sampling plane 9
sampling probes for stack sampling 410–414
dilution 413–414
null-type probes 411, 412
self-compensating probes 412–413
standard probes 410–411
velocity-sensing probes 411
sampling for ‘respirable’ fibers 385
sampling in stacks and ducts 403–416
basic considerations 403–404
direct-reading stack-monitoring instruments 415
sampling for determining particle size distribution in
stacks 414–415
sampling probes for stack sampling 410–414
stack sampling methods 404–409
sampling for total suspended particulate in the ambient
atmosphere 425–432
inhalable aerosol 431–432
total aerosol 425–430
sampling train 407, 408, 409
sampling tubes
deposition losses inside bent 180–181
deposition losses inside straight 173–179, 180
penetration of particles 187
sampling for very fine aerosols
combustion-related aerosols 394–395
ultrafine aerosols 394
scanning differential mobility analyzer (DMA) 504
seven-hole personal sampler 335–336, 545
sharp-cut cyclone (SCC) 438, 439
short-term exposure limits (STELs) 294
sieve samplers 480
silicone grease 533
SIMGARD sampler 364
SIMPEDS sampler 373, 387
SIMSLIN (Safety in Mines Light Scattering
Instrument) 367, 495, 561
single-hole personal sampler 335
measured sampling error as function of wind speed
for dry fused alumina dust particles of various
mean size 171
single-jet impactor 205–206, 207
measured sampling error as function of wind speed
for dry fused alumina dust particles of various
mean size 171
single-jet impactor 205–206, 207
single-stage impactors, inertial samplers 478–481
Sioutas personal cascade impactor sampler 461, 463
slip 23–24
slit-type impactor 479
slowly moving air 48–50
aspiration in 149–154
smog 320–321
smoke 4
smokes, suggested factors to convert personal exposures to 'total' aerosol 545
spectrometers see aerosol spectrometers
spherical blunt samplers
air flow about 86–89
in calm air, aspiration efficiency for 139
trajectories of particles near 137
see also blunt samplers; cylindrical blunt samplers;
disk-shaped blunt samplers
spinning disk aerosol generator 51–52
splash fragments 103
split-flow electrostatic elutriator 503
spray 4
stack sampling
cascade impactors for 462, 463
sampling probes for 410–414
in the UK and elsewhere 409
in the USA 405–409
determination of particulate matter emissions from stationary sources 407–408
determination of PM10 emissions 408
sample and velocity traverses for stationary sources 406
sample and velocity traverses for stationary sources with small stacks or ducts 407
stack sampling methods 404–409
stacks
direct-reading stack-monitoring instruments 415
and ducts, sampling in 403–416
sampling for determining particle size distribution in 414–415
stagnation 18–19, 86, 87, 88
standard thermal precipitator (STP) 315, 362, 363, 550
standards
for aerosols 219–308
definition 222
for bioaerosols 474
EN 13205 63–64, 352, 537–538
nonhealth-related 233–234
processes of standards setting 292
'total' aerosol 248
static inhalable aerosol samplers
3 Lpm 330–331

comparison between theory and experimental results 354
static samplers for coarse aerosol fractions
inhalable aerosol 328–333
total aerosol 327–328
stationary air, streamline patterns 72
Stokes' law 22
Stokes number 26, 27
Stokes regime 22
stop distance 25
stratified counting 470
stream surfaces 16
streamline patterns 15–16, 72, 131–132
for aspirating thin-walled cylindrical sampling tube placed at an angle to the freestream 95, 96
aspirating thin-walled cylindrical tube facing the freestream 93, 94
aspirating thin-walled tube facing into the wind 73
Strouhal number 84
experiment results for a cylindrical blunt sampler 85
sub-isokinetic air aspiration rate 97
sub-isokinetic conditions 74
sugar tubes 313
sulfate, summary of results for a number of Canadian cities 595
sulfate ion 297
sulfidic nickel, ranking of plant areas/worksites according to the mean level of equivalent exposure to 567
super-isokinetic conditions 74
superconductive quantum interference devices (SQUIDS) 260
superimposed particle trajectories, for aspirating thin-walled cylindrical sampling tube placed at an angle to the freestream 95, 96
surface area monitoring 510–511
suspended particulate matter (SPM) 425
TAMU inlet 433, 435
tapered element oscillating microbalance (TEOM®) 380–381, 508–509, 587
Tauber pollen collector 478
TBF50 static sampler 368
test aerosols
choosing type of 50
idealised 50–52
test facilities for aerosol sampler studies 39–50
calm air 45–48
moving air 40–45
slowly moving air 48–50
thermal precipitation, aerosol particle size selection after aspiration 214–215
thermal precipitator 315, 362
thermophoresis 214
thermophoretic velocity 214
thick-walled tubes 75–76
thin-walled aerosol sampling probes facing the wind, mathematical models 109–114
thin-walled cylindrical samplers in calm air and moving air, comparison between measured and modeled aspiration efficiency 153
thin-walled cylindrical sampling tubes, aspirating tube facing the wind 97
thin-walled cylindrical sampling tubes in calm air, aspiration efficiency for 138
thin-walled sampling tubes
comparison between measured and modeled aspiration efficiency 152
typical particle trajectories 136, 137
thick-walled slots, and tube entries 73–75
thin-walled tube samplers 94–116
isokinetic conditions 95
qualitative description of aerosol transport 94–96
thin-walled tubes
comparison between measured and modeled aspiration efficiency for thin-walled tubes in calm air 147
experimental studies for sampler orientation 104–105
facing into the wind
axial distributions of air velocity 75, 76
deposition losses inside 181–184
nature of air flow pattern near entrance to aspirating 75
thin-walled tubes facing the freestream, experimental studies 98–104
thoracic aerosol sampler, performance of the porous foam pre-selector stage of the prototype 436
thoracic fraction 270, 273, 321
definition 273
samplers for the 385–391
see also extrathoracic fraction
thoracic particle size selection for fibrous aerosols 393–394
thoracic and respirable aerosol fractions 273–275
threshold limit values (TLVs) 293, 294, 295–296
Timbrell spectrometer 449–450
time-weighted average (TWA)
aerosol concentrations 490
particle-number sampling 312
TM-Digital respirable dust photometer 495–496, 561
tobacco smoke 4
tolerance bands 283–284
'total’ aerosol
converting personal exposures to ‘total’ aerosol using 37 mm closed-face plastic cassette sampler 545
personal samplers for coarse aerosol fractions 333–344
sampling for total suspended particulate in the ambient atmosphere 425–432
sampling in workplaces 327–328
'total’ aerosol deposition, experimental results for 260–261
total airborne particulate 317
'total’ and inhalable aerosol
comparison between workers’ exposures 549
gravimetric samplers for 317
relationship between 539–549
side-by-side comparative studies 540–547
total suspended particulate (TSP) 237, 248, 321, 425–432
and black smoke 577–580
comparison between results obtained using a high volume sampler and a Japanese 400 Lpm sampler 578
experimental results for overall sampling efficiency
for samplers for collection of 426
experimental results for sampling efficiency of 429
results for a number of Canadian cities 595
results of side-by-side comparisons of data collected at locations in Berlin for black smoke and 580
results of side-by-side comparisons of PM10, PM15 and TSP at six locations in the US 583
sketch of a sampler used for 427
total suspended particulate (TSP) concentrations, study to examine relationship between PM10 and 584
total suspended particulate (TSP) sampler inlets 428
total suspended particulate (TSP) samplers 579
‘total’ to inhalable aerosol measurement, practical impact of changes from 548–549
tracheobronchial and alveolar aerosol fractions, criteria for 276–278
tracheobronchial deposition, regional deposition of inhaled aerosols 262–264
tracheobronchial deposition efficiency, calculated results for 277
transmission/extinction monitoring 492–494
transmissometers 494
TSP see total suspended particulate (TSP)
tube gravitational deposition parameter, dimensionless 182
turbulence 20–22, 90
effect on samplers with circular slit inlet 162
effects on aspiration 158–162
effects on the sampling efficiencies of thin-walled probes under anisokinetic conditions 162
turbulence (continued)
 simulation of 40
 two-dimensional blunt sampling systems 76–80
 two-stage samplers 360
Tyndallometer, comparison between scattered light intensity and the gravimetric respirable mass concentration obtained using the MRE sampler placed side-by-side 560
Tyndalloscope 560
ultimate cascade impactor 454
ultrafine aerosols
 exposure limit values 304–305
 particle size-selective criteria for 280–281
 sampling for fine aerosol fractions in the ambient atmosphere 439–440
 sampling in the workplace 394
ultrafine particles, calculated results for deposition efficiency for 282
velocity potential 20
velocity-sensing probes, sampling probes for stack sampling 411, 412
vena contracta 66, 74, 185
VeroTect instrument 513
vertical elutriation 194–195
vertical elutriators 386, 387
very fine aerosol fractions, particle size-selective criteria for 278–279
very fine and ultrafine aerosols, results for the deposition of 266–268
very sharp-cut cyclone (VSCC) 438
viable organisms 474
vibrating-orifice aerosol generator (VOAG) 52, 53
virtual impaction 209–211
virtual impactor efficiency 209
viruses 4
Vitols theory 111
volume scattering coefficient, relationship between particle size parameter and 492, 493
volumetric spore trap, 7-day recording 479
vortex shedding 84, 85
water condensation particle counter 505
Wedding inlet, performance of 433, 435
weighted least squares (WLS) regression 541
welding fume 4
well impactor ninety-six 435
wide-ranging aerosol classifier (WRAC) 465, 466, 520, 593
wind speeds, simulation of 39–40
wind tunnel experiments, aspiration characteristics of long cylindrical blunt body placed transverse to freestream with single circular sampling orifice facing into the wind 166, 167
wind tunnels 40–45, 65, 430
 AEA Technology 44, 45
 Institute of Occupational Medicine 42–43
 low wind speed 49
 miniature 41
 UCLA 43–44
 ultralow wind speed 49, 50
 University of Cincinnati 42
 University of Michigan 45, 46, 49
working environments, framework for aerosol sampling in 221–235
workplace aerosol measurement, future of 569–570
workplace aerosols, classification of 562–568
workplaces
 bi-modal particle size distribution in 7
 comparisons between optical and gravimetric aerosol samplers 559–562
 field experience with aerosol samplers in 537–573
 sampling for fine aerosol fractions 359–402
 sampling in workplaces 327–358
 WRAC (wide-ranging aerosol classifier) 465, 466, 520, 593
 Wright dust feed 53, 54