Contents

List of Contributors XV
Preface XIX

1 Tautomerism: A Historical Perspective 1
José Elguero
1.1 Thermodynamic Aspects 2
1.1.1 What Is Well Known 2
1.1.2 What Needs to Be Completed 3
1.1.3 What Is Ill Known 4
1.2 Kinetic Aspects 5
1.2.1 What Is Well Known 5
1.2.2 What Needs to Be Completed 6
1.2.3 What Is Ill Known 6
1.3 Conclusions 6
References 7

2 “Triage” for Tautomers: The Choice between Experiment and Computation 11
Peter J. Taylor and Liudmil Antonov
2.1 Introduction (Original Text Written by Peter J. Taylor) 11
2.2 cis-Amides 12
2.3 Tautomerism in Alicyclic Lactams: Six-Membered Rings 13
2.4 Tautomerism in Alicyclic Lactams: 2-Pyrrolidinone 14
2.5 Tautomerism in Other Five-Membered Ring Lactams 16
2.6 Tautomeric Ratios Requiring Computation: Alicyclic β-Diketones 17
2.7 Tautomeric Ratios Requiring Computation: “Maleic Hydrazide” 18
2.8 Tautomer Ratios Requiring Computation: 2-Oxo Derivatives of Pyrrole, Furan, and Thiazole 20
2.9 Tautomeric Ratios Requiring Computation: Compounds Containing Contiguous Carbonyl Groups 22
2.10 Tautomeric Ratios Requiring Computation: Compounds Containing Contiguous π-Donors 24
3 Methods to Distinguish Tautomeric Cases from Static Ones 35

Poul Erik Hansen

3.1 Introduction 35
3.2 The Liquid State 36
3.2.1 NMR 36
3.2.1.1 1H NMR 36
3.2.1.2 15N NMR 38
3.2.1.3 13C Chemical Shifts 39
3.2.1.4 19F NMR 41
3.2.1.5 17O NMR 41
3.2.2 Isotope Effects on Chemical Shifts 42
3.2.2.1 Deuterium Isotope Effects on 13C Chemical Shifts 44
3.2.2.2 Deuterium Isotope Effects on 15N Chemical Shifts 47
3.2.2.3 Deuterium Isotope Effects on 17O Chemical Shifts 47
3.2.2.4 Isotopic Perturbation of Equilibrium 47
3.2.2.5 Primary Isotope Effects 48
3.2.3 Coupling Constants 51
3.2.3.1 1J(N,H) 51
3.2.3.2 1J(C,H) 52
3.2.4 Multiple Equilibria 52
3.3 UV/VIS Spectroscopy 53
3.4 Infra Red Spectroscopy 55
3.4.1 Ambient temperature spectra 55
3.4.2 Matrix isolation spectra 56
3.5 Tautomerism in the Excited State 56
3.6 Near-Edge X-Ray 56
3.7 Energy-Dispersive X-Ray 57
3.8 Solid State 57
3.8.1 NMR 57
3.8.1.1 Isotope Effects on Chemical Shifts 58
3.8.2 X-Ray 59
3.9 Single Molecule Tautomerization 59
3.10 Gas Phase 60
3.11 Theoretical Calculations 61
3.11.1 Energies 62
3.11.2 NMR Chemical Shifts 62
Contents

6.4 Relation to Drug Design 123
6.4.1 Ligand Binding 123
6.4.2 Drug Partitioning 125
6.5 In-solution Equilibrium Calculations 127
6.5.1 Neutral Systems 128
6.5.1.1 Heterocyclic Tautomers 128
6.5.1.2 Amino Acids and Aminophenols 135
6.5.1.3 Keto–Enol Tautomerism 138
6.5.1.4 Miscellaneous Systems 140
6.5.2 Tautomeric Protonation 141
6.6 Concluding Remarks 142
References 143

7 Direct Observation and Control of Single-Molecule Tautomerization by Low-Temperature Scanning Tunneling Microscopy 147
Takashi Kumagai and Leonhard Grill
7.1 Brief Introduction to STM 148
7.1.1 Operation Principle of STM 148
7.1.2 Theoretical Model of STM 149
7.1.3 Scanning Tunneling Spectroscopy 149
7.1.4 Inelastic Electron Tunneling Process 151
7.2 Direct Observation of Single-Molecule Tautomerization Using STM 152
7.2.1 Tautomerization within Porphyrin and Phthalocyanine Derivatives 152
7.2.2 Tautomerization within a Single Porphycene Molecule 155
7.2.2.1 Introduction 155
7.2.2.2 Adsorption Structure of a Porphycene Molecule on a Cu(110) Surface 156
7.2.2.3 Thermally Induced cis–cis Tautomerization 157
7.2.2.4 STM-Induced cis–cis Tautomerization 159
7.2.2.5 Mechanism of STM-Induced Tautomerization 163
7.2.2.6 Control of Tautomerization with Single Copper Atoms 166
7.2.2.7 Tautomerization of Individual Porphycene Molecules in Molecular Assemblies 170
7.3 Concluding Remarks 172
Acknowledgments 172
References 172

8 Switching of the Nonlinear Optical Responses of Anil Derivatives: From Dilute Solutions to the Solid State 175
Frédéric Castet and Benoît Champagne
8.1 Introduction 175
8.2 Experimental and Theoretical Methods 178
Contents

8.2.1 Nonlinear Optical Properties of Molecular Compounds and Solids 178
8.2.2 Experimental Measurements of Quadratic Molecular Hyperpolarizabilities 179
8.2.3 Calculations of Molecular Quadratic Hyperpolarizabilities 181
8.2.4 Calculations of Second-Order Nonlinear Susceptibilities of Molecular Solids 185
8.3 Second-Order Nonlinear Optical Responses of Anils 187
8.3.1 NLO Responses of Anils in Solution: Structure–Property Relationships 187
8.3.2 Solvent Effects on the NLO Switching Properties of Anils 191
8.3.3 Switching in the Solid State: Impact of Intermolecular Interactions on the NLO Responses 193
8.4 Conclusions 196
Acknowledgments 197
References 197

9 Tautomerism in Oxoporphyrinogens and Pyrazinacenes 203
Jonathan P. Hill, Jan Labuta, Shinsuke Ishihara, Gary J. Richards, Yongshu Xie, Francis D’Souza, and Katsuhiko Ariga
9.1 Introduction 203
9.2 Tautomerism in Oxoporphyrinogen, OxP 205
9.3 Multichromic Acidity Indicator Involving Tautomerism 211
9.4 Polyautochromic in Oxocorrologen, OxC 212
9.5 Tautomerism in Linear Reduced Fused Oligo-1,4-pyrazines (Pyrazinacenes) 219
9.6 Conclusion 225
References 226

10 Enolimine–Ketoenamine Tautomerism for Chemosensing 229
Alexander D. Dubonosov, Vladimir A. Bren, and Vladimir I. Minkin
10.1 Introduction 229
10.2 Prototropic Enolimine–Ketoenamine Tautomerism 229
10.3 Ionochromic Enolimine–Ketoenamine Tautomeric Systems for Ions Sensing 234
10.4 Concluding Remarks 247
Acknowledgments 247
References 247

11 Tautomerizable Azophenol Dyes: Cornerstones for Advanced Light-Responsive Materials 253
Jaume Garcia-Amorós and Dolores Velasco
11.1 Azobenzene-Based Light-Sensitive Materials 253
11.2 Azophenols: Tautomerizable Photochromes with Fast Switching Speeds 255
11.2.1 Thermal Isomerization Kinetics of Azophenols in Isotropic Solvents 256
11.2.2 Thermal Isomerization Kinetics of Azophenols in Liquid-Crystalline and Glassy Media 259
11.3 Sub-Millisecond Thermally Isomerizing Azophenols for Optically Triggered Oscillating Materials 262
11.4 Fast-Responding Artificial Muscles with Azophenol-Based Liquid Single Crystal Elastomers 266
11.5 Conclusion 268
References 269

12 Controlled Tautomerism: Is It Possible? 273
Daniela Nedeltcheva-Antonova and Liudmil Antonov
12.1 Introduction 273
12.2 Manipulation of Electronic Properties of the Substituents 275
12.3 Tautomeric Tweezers 278
12.4 Tautomeric Cavities 279
12.5 Proton Cranes 282
12.6 Rotary Switches 290
12.7 Concluding Remarks 291
Acknowledgments 291
References 291

13 Supramolecular Control over Tautomerism in Organic Solids 295
Krunoslav Užarević, Vladimir Stilinović, and Mirta Rubčić
13.1 Crystal Engineering and Tautomerism in Molecular Solids 297
13.2 Supramolecular Synthons 298
13.3 Solid-State Tautomerism, Proton Transfer, and Hydrogen Bonding 300
13.4 Supramolecular Stabilization of Metastable Tautomers 304
13.5 Identification of Tautomeric Properties and Connectivity Preferences 305
13.6 Synthetic Methods 306
13.7 Supramolecular Interactions in Other Tautomeric Solids 310
References 324

14 Proton Tautomerism in Systems of Increasing Complexity: Examples from Organic Molecules to Enzymes 329
Hans-Heinrich Limbach, Gleb S. Denisov, Ilya G. Shenderovich, and Peter M. Tolstoy
14.1 Introduction 329
14.2 Hydrogen Bond Geometries and Proton Transfer 330
14.3 Tautomerizations without Requiring Reorganization of the Environment 333
14.3.1 Examples of Intramolecular Tautomerizations without Requiring Reorganization of the Environment 334
14.3.2 Examples of Intermolecular Tautomerizations in the Absence of Pre-Equilibria without Requiring Major Reorganization of the Environment 338
14.3.3 Examples of Intermolecular Tautomerizations in the Presence of Pre-Equilibria without Requiring Major Reorganization of the Environment 340
14.3.4 Mechanisms of Tautomerizations without Requiring Reorganization of the Environment 342
14.3.5 An Application to the Function of the Imidazole Ring of Histidine 64 in Human Carbonic Anhydrase II 344
14.4 Tautomerizations Requiring Reorganization of the Environment 346
14.4.1 Tautomerization of Charged Molecules and Hydrogen Bonded Clusters 347
14.4.1.1 Proton Sponges 347
14.4.1.2 Phenol–Carboxylate versus Carboxylic Acid–Phenolate Complexes 351
14.4.1.3 Homoconjugated Carboxylic Acid Carboxylates 354
14.4.2 Tautomerization of Neutral Heterocyclic Acid–Base Complexes 356
14.4.2.1 Model Complexes of the Acid–Pyridine Type 356
14.4.2.2 Mannich Bases 358
14.4.2.3 Model Schiff Bases 359
14.4.2.4 The Cofactor Pyridoxal 5′-phosphate: from Organic Models to Alanine Racemase and Aspartate Aminotransferase 360
14.5 Conclusions 364
Acknowledgments 365
References 365
Index 373