Index

a
absorption 391
acoustic drop ejection (ADE) 429
acoustic pressure waves 341
adaptive mesh refinement 175
additive manufacturing 374
advanced functional materials 378–379
advancing contact angle 200
aerodynamic effects 47–48, 424
anti-kogation agents 155
apparent contact angles 288–289
atomic force microscopy 388
axisymmetric inkjet simulation 185–194

b
back shooter structure 63
backscatter drop detection 438
base viscosity 342–344
binary image analysis method 330–331
binary solvent mixtures 259–263
biocides 154
biological analysis 393
biomacromolecule 411–412
bioprinting 393
block co-polymer 119
body force 19, 22
boiling mechanism 58–63
Bond number 252
bridging flocculation 150–151
Brownian motion 159
bubble formation 58
Buckingham Pi theorem 210–212
bulge formation 220–221
bulge instability 235
buoyancy force 161
c
CAH, see contact angle hysteresis (CAH)
canonical driving waveform 189–190
capillary break-up 220
capillary deceleration 99–101
capillary number 252
carbon nanotube (CNT)–polymer composites 137
cavitation 59, 66–68
centrifugal sedimentation 164
ceramic inks 406
chain growth polymerization 118
chemical analysis 381
chemically inhomogeneous surfaces 306–307
CIJ printing, see continuous inkjet (CII) printing
coefficients of viscosity 22
coffee-ring effect 252–268
colloidal particles 144–165, 274
commercial software packages 25–26, 170
commercialization process 31
complex actuation pulse design 85–88
computational fluid dynamics (CFD) 25–28, 176–177
computer simulations 225
condensation 222
confocal microscopy 325–326, 328–330
constrained actuation pulse design 84–85
contact angle hysteresis (CAH) 200, 264, 289–290, 301–305
contact angle observation 385
contact angle 285
contact line motion 269
INDEX

continuous jets 30–31
continuum surface force (CSF) approach 287
continuum-based droplet simulation modeling 282–284, 286–288
c conventional printing methods 1
coordination polymerization 118
Cox Merz rule 346
critical spread length 227–228
crosstalk 45–47
cured ink adhesion 381
cytotoxicity tests 393
d deep reactive ion etching (DRIE) 428
density 15–16
depletion flocculation 151–152
Derjaguin, Landau, Vervey, and Overbeek theory (DLVO theory) 144, 147, 149
diffuse interface droplet simulation models 294–296
Diffusive Wave Spectrometer (DWS) 350
digital printing process 2
dimensional analysis 211
dimensionless groups 8–9
dimensions 14–15
dispersions 155–161
DLS, see dynamic light scattering (DLS)
DNA grafting 265
DNA stretching 267
DOD printing, see drop-on-demand (DOD) inkjet printing
drag force 161
drop coalescence 220–222, 225–228, 230–234
drop deposition interval 242–244
drop formation 124, 340
drop impact behavior 226–228, 373, 375–376
drop placement errors 423
drop spacing 221, 234, 238–242
drop speed effect 203, 206
drop speeds 5
drop volume 421–424
drop–head coalescence 236–237
droplet drying 251–275
drops on substrates 199–217
Duineveld’s model 245
dye-based inks 142–143
dynamic contact angle 291–293
dynamic light scattering (DLS) 155–156
dynamic viscosity 7
e edge detection method 331–336
electrical tests 373, 389–390
electrophoretic mobility 156–157
electrostatic drop-on-demand inkjet 429
electrostatic forces, see electrostatic drop-on-demand inkjet
electrostatic repulsive forces 145–146
ELISA detection technique 393
eck lpsometry 372, 390
energy conservation equations 22–24
equilibrium contact angle 199–200
Eulerian-based interface tracking 33
evaporating drop radius 216
evaporating droplets 252–265
extensional behavior 351–356
extensional viscosity 8, 96, 160, 343, 352
f FENE model, see infinitely extensible nonlinear elastic model (FENE)
FENE-CR model 191–193
Fick’s first law 254
final droplet velocity 99–102
final printed surface 379–380
finite difference method 176
finite element analysis 282
finite element method 176
finite volume method 176
finely extensible nonlinear elastic model (FENE) 129–130, 191–194
Flattened-pancake model 214
flextrensional devices 434
Flow3D software program 51, 194–195, 288
fluid delivery device 420
fluid dynamics 20–25
fluid flow governing equations 24–25
fluid mechanics 13–53
fluid–structure interaction (FSI) 34
free-energy model 299
free-surface analysis (FSA) 32–35, 37, 41
free-surface flow boundary conditions 283–284
FSA, see free-surface analysis (FSA)
FSI, see fluid–structure interaction (FSI)
function delivery 376–379
functional printing 94
Index

g
galactomannan heterogeneous polysaccharides 134
gases 14
gel permeation chromatography (GPC) 122
glycol ethers 154
GPC, see gel permeation chromatography (GPC)
graphene–polymer composites 137
graphical inkjet printing 94, 368–370, 378, 398
gravitational force 161
gravitational sedimentation 163

h
hard-sphere dispersions 157–159
head droplet formation 103–105
heat control 64–65
hindered settling 162
Hoffman–Voinov–Tanner law 291
holography 320, 322–325
HP Inkjet Web Press 57
humectants 153–154

i
imbibition 386–387
IMI, see ink–media interaction (IMI)
impact capillary length 214
impact effects 424
indirect inkjet printing 436–437
industrial applications 88–89
inelastic scattering 392
ink and substrate selection 251–252
ink channel behavior 340
ink formulation 340
ink recirculation 436
ink residue scorching 67–68
ink supply system 340
inkjet fluids 339–362
inkjet print-heads 141
inkjet systems 29–34, 36–38, 42–52
inkjet technology limitations 421–424
ink–media interaction (IMI) 36, 48–51
in-line digital holography 321
input power characteristics 64
interface formation model 285–286
interfacial hydrodynamics 199
isothermal evaporation 259

j
jet directionality 423
jetting 159–160
jetting fluid constraints 421
jetting process variables 339
jetting simulations 169–170, 172–177, 194–195

k
Knudsen number 254
Krieger–Dougherty equation 157

l
LabVIEW 331–334
Lagrangian equations 20–21
Lagrangian finite-element method 186, 191
Lagrangian interface tracking 34
Landa process 436
lattice Boltzmann simulation 296–307
LB, see lattice Boltzmann simulation
length scales 9–11, 20
limiting mode evaporation 258–259
line formation dynamics 222
line printing model 236–246
line printing 219–225
linear viscoelasticity 347–350
liquid drops on liquid surfaces 385
liquid drops on solid surfaces 382–384
liquids 14
liquid–vapor interface 254–256
local humidity 273
long drop throw distance 74
long wavelength approximation 177–178
long-term behavior 380–381

m
Marangoni flows 252, 260–263
Mark–Houwink–Sakurada equation 123
mass conservation equations 21
MatLab 335–336
maximum spreading diameter 211–213
mechanical tests 370, 378, 388–389
MEMS techniques, see
Micro-Electro-Mechanical Systems (MEMS)
fabrication techniques
mesh resolution 175
mesoscopic methods 296
metallic inks 404–405
Micro-Electro-Mechanical Systems (MEMS)
fabrication techniques 419, 431–434
microscale ink-medium model 52
millimeter-sized water drops 226
Mk2 Trimaster device 352–353, 358
molar mass distribution 120–121
molecular dynamics 296
molecular weight determination 120–122
molecular weight stability studies 131–134
momentum conservation equations 21–22
moving contact-line droplet simulation 284–286
Multi jet Fusion technology 57–58
multiphase flow and wetting 300–301
multiphase Shan–Chen LB model 300
multi-scale and multidisciplinary modeling 31

nanochromatography 266–267
nanoindentation 388–389
nanowire assembly 266
Navier–Stokes and continuity equations 282
necking stage dynamics 222–224, 230–234
net interaction energy curve 147–149
Newton’s law of viscosity 17
Newtonian fluids 17
non-graphics applications 440
non-Newtonian fluids 17, 35–36
no-slip boundary condition 16, 284–285

Ohnesorge number (Oh) 8, 9, 127, 182
one-dimensional inkjet simulation 177–185
optical tests 370, 372–376, 378, 390–392

paper 367, 380
parameter space exploration 183–184, 187
particle character 269, 271–272
particle migration 268
particle transport 268
patents 78
Péclet number 158
pharmaceutical development 375
phase change analysis (PCA) 35
phase field methods 295
physical/mechanical tests 370, 378, 388–389
Piezo Axial Vibrator (PAV) rheometer 349–351
piezo inkjet (PIJ) print-head 5, 37–38, 57–58, 427–428
pigmented inks 142–143
pigments and additives 341
PIJ print-head, see piezo inkjet (PIJ) print-head
pinch-off and tail breakup 108–110
PMMA 133
poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) 136
polymer architecture 135
polymer interactions 149–154
polymers 117–137
porous media modeling 51
postprocessor subprogram 28
prejetting surface quality 367–373
preprocessor 26, 28
pressure and heat generation 66–68
pressure 19
printed electronics 371–373, 407–408
printed image formation 219–220
print-head designs 340
print-head performance 356–360
print-heads 57–89, 419–444
projectile problem 209–210
protein printing 380–381

quantum dots 406–407

Radio Corporation of America (RCA) 77
Raman scattering 392
Raoult’s law 259–260
rapid boiling 58
Rayleigh Plateau instability 93–98, 112–114
Rayleigh stability theory evaluation 180–183
Rayleigh’s linear stability analysis 328
RCA facsimile concept 77
reactive inkjet printing 375–376
rebound phenomenon 62
receding contact angle 200
refill process 42
reptation 124
residual oscillations 82–83
resonant frequency 81
resting time effect 293–294
Reynolds number (Re) 8, 127
Reynolds’s lubrication theory 177
rheology modifiers 153
rheology 157, 339–346, 356–360
roof shooter structure 63
rough surfaces 305–306

satellite formation 99
sedimentation/settling 160–165
sequestering agents 155
sessile droplet drying 252, 258–260, 267, 274
shadowgraphy 186, 314–315
sharp-interface models 282–288
shear strain rate 7
shear thickening behavior 129, 159, 400
shear thinning behavior 129, 159–160, 400
shear viscosity behavior 157
sheet resistance 390
Silverbrook Memjet print-head 439
simple jetting model 178–180
single solvent evaporation 252–259
slender-jet approximation 177
solid segregation 272–273
solid–vapor interfacial tension 384
solutal Marangoni flow 263
solver subprogram 28
spliced model 189
spreading factor 203–204, 206
stability regimes 244–246
static light scattering 121
steady two-dimensional flow 284–285
step-growth polymerization 118
steric stabilization 149–150
storage buffers 154
strobe illumination 317–319
substrate patterning 273
super-hydrophobic property 215–216
surface characterization 373–393
surface chemistry tests 368–385
surface forces 19
surface tension 6, 18, 208–209, 381–382
surface wettability effect 206–207, 424
surfactants 152–153

t
Tanner’s law 206
technological applications 251
thermal inkjet (TIJ) print-head 38–42, 58–71, 426, 439
theoretical model 58–59
thermal inkjet (TIJ) printing 31, 38–43, 57–71, 425–426, 432
thermal Marangoni flows 260–262
thermal/bubble-jet process, see thermal drop-on-demand inkjet
thermoplastics 117
thermosets 117
three-dimensional (3D) printing 220–222, 265, 374–375, 399–404
three-dimensional inkjet simulation 194–196

TIJ print-head, see thermal inkjet (TIJ)
print-head
timescales 11
tissue engineering 412–414
tonejet ink 435
Trimaster Mk4 device 355
Trouton ratio 8, 343
two inkjet-printed drops 230
u
units 14–15
v
van der Waals attractive forces 144–145
velocity 19
viscoelasticity 344–346
viscosity 6–8, 16–17, 208–209
viscosity modifiers 153
viscosity–shear rate profile 128
viscosity–temperature profile 16, 128
viscous dissipation vs. surface tension 208, 213–214
Vision Assistant 332
volume of fluid (VOF) method 33, 177, 286–288
w
wall correction factor 162
Washburn equation 387
water evaporation 69–71
Weber number (We) 8, 101, 126–127, 178
Weissenberg number (Wi) 125, 160
Wenzel’s equation 264
wide format printing 438
work of cohesion 382
x
Xaar 1001 print head 436
y
Young’s equation 199, 264
Young–Dupré equation 383–384
z
zero-thickness surface 282
zeta potential 156
Zimm relaxation time (λ_Z) 126
Zimm type model 125–129