Contents

Preface xiii
Acknowledgements xv
About the Companion Website xvii

1 Introduction 1
1.1 The purpose of the book 1
1.1.1 What this book adds 3
1.1.2 Scales of analysis and alternative definitions 3
1.2 Key objectives 4
1.3 Case studies and examples 5
1.4 Why is spatial scale important? 5
1.5 Structure of the book 6
1.6 Further reading 6
References 7

2 Scale in Spatial Data Analysis: Key Concepts 9
2.1 Definitions of spatial scale 9
2.2 Spatial autocorrelation and spatial dependence 11
2.3 Scale dependence 13
2.4 Scale and data models 14
2.5 Spatial scales of inquiry 14
2.6 Scale and spatial data analysis 14
2.7 Scale and neighbourhoods 15
2.8 Scale and space 16
2.9 Scale, spatial data analysis and physical processes 23
2.10 Scale, spatial data analysis and social processes 25
2.11 Summary 26
2.12 Further reading 26
References 26

3 The Modifiable Areal Unit Problem 29
3.1 Basic concepts 29
CONTENTS

3.2 Scale and zonation effects 29
3.3 The ecological fallacy 32
3.4 The MAUP and univariate statistics 34
 3.4.1 Case study: segregation in Northern Ireland 35
 3.4.2 Spatial approaches to segregation 38
3.5 Geographical weighting and the MAUP 38
3.6 The MAUP and multivariate statistics 39
 3.6.1 Case study: population variables in Northern Ireland 40
3.7 Zone design 41
3.8 Summary 42
3.9 Further reading 42
References 42

4 Measuring Spatial Structure 45
4.1 Basic concepts 45
4.2 Measures of spatial autocorrelation 45
 4.2.1 Neighbourhood size 47
 4.2.2 Spatial autocorrelation and kernel size 47
 4.2.3 Spatial autocorrelation and lags 50
 4.2.4 Local measures 50
 4.2.5 Global and local I and spatial scale 51
4.3 Geostatistics and characterising spatial structure 53
 4.3.1 The theory of regionalised variables 54
4.4 The variogram 57
 4.4.1 Bias in variogram estimation 59
4.5 The covariance function and correlogram 59
4.6 Alternative measures of spatial structure 60
4.7 Measuring dependence between variables 63
4.8 Variograms of risk 64
4.9 Variogram clouds and h-scatterplots 64
4.10 Variogram models 65
4.11 Fitting variogram models 68
4.12 Variogram case study 70
4.13 Anisotropy and variograms 74
 4.13.1 Variogram surfaces 74
 4.13.2 Geometric and zonal anisotropy 75
4.14 Variograms and non-stationarity 77
 4.14.1 Variograms and long-range trends 77
 4.14.2 Variogram non-stationarity 79
4.15 Space–time variograms 82
4.16 Software 83
4.17 Other methods 83
4.18 Point pattern analysis 84
 4.18.1 Spatial dependence and point patterns 85
 4.18.2 Local K function 91
 4.18.3 Cross K function 92
CONTENTS

4.19 Summary 97
4.20 Further reading 97
References 97

5 Scale and Multivariate Data 103
5.1 Regression frameworks 104
5.2 Spatial scale and regression 104
5.3 Global regression 105
5.4 Spatial regression 105
5.5 Regression and spatial data 106
 5.5.1 Generalised least squares 106
 5.5.2 Spatial autoregressive models 107
 5.5.3 Spatially lagged dependent variable models and spatial error models 109
 case study .. 109
5.6 Local regression and spatial scale 111
 5.6.1 Spatial expansion method 111
 5.6.2 Geographically weighted regression 112
 5.6.3 Scale and GWR 115
 5.6.4 GWR case study: fixed bandwidths 115
 5.6.5 GWR case study: variable bandwidths 116
 5.6.6 Bayesian spatially varying coefficient process models 118
5.7 Multilevel modelling 119
 5.7.1 Case study 125
5.8 Spatial structure of multiple variables 129
5.9 Multivariate analysis and spatial scale 130
5.10 Summary 131
5.11 Further reading 131
References 131

6 Fractal Analysis 135
6.1 Basic concepts 135
6.2 Measuring fractal dimension 138
 6.2.1 Walking-divider method 139
 6.2.2 Box-counting method 140
 6.2.3 Vario gram method 142
6.3 Fractals and spatial structure 142
 6.3.1 Case study: fractal \(D \) of land surfaces 143
 6.3.2 Case study: local fractal \(D \) 146
 6.3.3 Fractals and topographic form 149
6.4 Other applications of fractal analysis 152
 6.4.1 Fractals and remotely sensed imagery 152
 6.4.2 Fractals and urban form 153
6.5 How useful is the fractal model in geography? 155
6.6 Summary 155
6.7 Further reading 155
References 155
7 Scale and Gridded Data: Fourier and Wavelet Transforms

7.1 Basic concepts
7.2 Fourier transforms
 7.2.1 Continuous Fourier transform
 7.2.2 Discrete Fourier transform
 7.2.3 Fast Fourier transform
 7.2.4 FFT case study
 7.2.5 Spectral analysis and the covariance function
 7.2.6 Spectral analysis case study
7.3 Wavelet transforms
 7.3.1 Continuous wavelet transforms
 7.3.2 Discrete wavelet transforms
 7.3.3 The Haar basis functions
 7.3.4 Other basis functions
 7.3.5 Fast wavelet transform
 7.3.6 Two-dimensional wavelet transforms
7.4 Wavelet analysis applications and other issues
7.5 Summary
7.6 Further reading
 References

8 Areal Interpolation

8.1 Basic concepts
8.2 Areal weighting
8.3 Using additional data
 8.3.1 Types of secondary data sources for mapping populations
8.4 Surface modelling
 8.4.1 Population surface case study
8.5 Other approaches to changing support
8.6 Summary
8.7 Further reading
 References

9 Geostatistical Interpolation and Change of Support

9.1 Basic concepts
9.2 Regularisation
 9.2.1 Regularisation with an irregular support
9.3 Variogram deconvolution
 9.3.1 Variogram deconvolution for irregular supports
 9.3.2 Variography and change of support
9.4 Kriging
 9.4.1 Punctual kriging
 9.4.2 Poisson kriging
 9.4.3 Factorial kriging
 9.4.4 Factorial kriging case study
CONTENTS

9.4.5 Kriging in the presence of a trend 215
9.4.6 Cokriging 222
9.4.7 Kriging with an external drift and other techniques 222
9.4.8 Interpreting the kriging variance 223
9.4.9 Cross-validation 223
9.4.10 Conditional simulation 224
9.4.11 Comparison of kriging approaches 224
9.5 Kriging and change of support 226
 9.5.1 Block kriging 226
 9.5.2 Area-to-point kriging 227
 9.5.3 Case study 229
9.6 Assessing uncertainty and optimal sampling design 231
 9.6.1 Nested sampling 231
 9.6.2 Assessing optimal sampling design 232
 9.6.3 Optimal spatial resolution 235
 9.6.4 Other approaches to optimal sampling design 236
9.7 Summary 236
9.8 Further reading 236
 References 236

10 Summary and Conclusions 241
 10.1 Overview of key concepts and methods 241
 10.2 Problems and future directions 243
 10.3 Summary 245
 References 245

Index 247