Index

a
- alternate line transformer 266–267
- Altman boundary conditions 290, 291
- anticlockwise circular polarizations 50
- arbitrary n-port microwave network 153

b
- bandpass frequency 219–221
- Bessel function 195
- B–H loop characteristics 107
 - maximum flux composite circuit vs. temperature 109
 - nickel–cobalt ferrite 108
 - YIG, temperatures 107
- bilinear transformation 163
- birefringence
 - cutoff frequency 70
 - direct magnetic field intensity 65, 67
 - quadrature magnetic coil arrangement 68
 - quadruple coil geometry 68
 - round birefringent waveguide 69
 - broadband multi-branch coupler 308
 - Butler network 313–314

c
- cavity resonator, up/down magnetization 260–261
- characteristic planes 290–292
- circular gyromagnetic waveguide 188
- circular polarization, and edge mode effect 118–120
- circular polarization, parallel plate waveguides
dielectric loaded, open sidewalls electric and magnetic fields 45
 - magnetic wall boundary condition 43
 - Maxwell’s equations 40
 - transmission line theory 41
- rectangular waveguide
 - backward direction, of propagation 39
 - forward direction, of propagation 39
 - TE01 mode 37
- three field components 38
clockwise circular polarizations 50
- coaxial differential phase-shifter
 - circular polarization 83
 - coaxial ferrite phase-shifter 83
 - conformal mappings 85
 - conformal transformation 86
 - higher-order modes 88
- homogenous line, capacitance 85
 - nonreciprocal coaxial phasor 82
 - nonreciprocal coaxial transmission line 83, 84
coaxial ferrite cylinder 33
coaxial ferrite phase-shifter 88
complex gyrator circuit 265–266
three-port junction circulator 265–266
turnstile circulator 204–207
composite dielectric resonator 297–298 see also waveguide
H-plane tee junction circulator 204–207
counterrotating generator settings 188
coupled mode theory
normal modes 53
orthogonal polarizations 55
scattering matrix 54
transmission variables 57
coupled quarter-wave long resonators 249, 250
coupled wave theory, Faraday rotation 32–33
coupling angle 172
Curie temperature 107
curl equations 43
cutoff frequency 70
cutoff numbers 173
twin slab ferrite phase-shifter 99–102
cylindrical resonator, shape factor 15–16
d
Dicke eigenvalue solution 247–248
Dicke junction 127
Dicke planes 287
dielectric loaded parallel plate waveguides, open sidewalls
electric and magnetic fields 45
magnetic wall boundary condition 43
Maxwell’s equations 40
transmission line theory 41
differential phase-shift ($\Delta \phi$) 82
directional couplers 309–311
direct magnetic field 83
direct magnetic field intensity 65, 67
discretization, rectangular waveguide phase-shifters 97–98
e
edge mode effect 111
circular polarization 118–120
circulators 123–124
dispersion equation 114
direct magnetic field intensity 65, 67
discretization, rectangular waveguide phase-shifters 97–98
eigen-networks 132
counterrotating 253
E-plane circulator 245
H-plane circulator 245
in-phase 253
reflection angles 245
reflection eigenvalues 246
turnstile circulator 209–211
unit elements 244
eigenvalue adjustment, turnstile plane switch 130–132
algorithm 147–148
diagram
H-plane waveguide tee junction 290
ideal three-port junction 207
reciprocal three-port junction 206
problem, H-plane reciprocal tee junction 286–289
Index

electromagnetic (EM) fields 172
elliptical Faraday rotator 77
E-plane ferrite-loaded ridge waveguide 81
E-plane turnstile off/on switch waveguide 134–136
eigen-networks 132
eigenvalue adjustment 130–132
E-plane tee junction, even and odd eigenvectors 128–130
numerical adjustments, of passbands 133–134
reflection switches 128
E-plane waveguide wye junction, first circulation condition 251–252
calculations of eigenvalues
counterrotating eigen-network 253
in-phase eigen-network 253
scattering parameters 253
small gap in-phase reflection eigenvalue, Smith chart of 254
Dicke eigenvalue solution 247–248
eigen-networks 244–246
E-plane geometry 249–251
pass band characteristic plane 246–247
reflection eigenvalue diagrams, of three-port junction circulator 242–244
scattering matrix, of reciprocal E-plane three-port Y-junction 240–242
schematic diagram 240
stop band characteristic plane 246–249

equivalent permittivity 199
even and odd eigenvectors
E-plane waveguide tee junction 130
lumped element models 129
even demagnetized eigen-network 132
even magnetized eigen-network 132
externally latched junction circulators 7

f
Faraday rotation effect 4, 19, 20, 49, 210
coupled wave theory 32–33
four-port circulator 30–31
isolator 29–30
magnetic variables 25–27
Faraday rotation-type phase shifter 31–32
Faraday rotator 138
ferrite-loaded transmission lines 42
field and power distribution 116, 117
field displacement 90
finite element (FE) 171, 218
algorithm 222–224
characteristic equation 226
coordinate system 102
cutoff numbers, twin slab ferrite phase-shifter 99–102
discretization, rectangular waveguide phase-shifters 97–98
evaluation, flow chart for 225, 227
industrial practice
dielectric loaded and regular waveguides 104
electronic driver circuit, multitoroid latching waveguide phase-shifter 105
higher-order modes, ferrite phase-shifter 104
inverted reentrant turnstile junction, in half-height WR75 waveguide for counterrotating mode 225
first circulation condition 228
for in-phase mode 225, 226
Smith chart representation 229
finite element (FE) (cont’d)
 LS modes limit waveguide bandwidths 98–99
 polynomial solutions 225
 split phase constants, twin slab ferrite phase-shifter 99–102
 tetrahedral 97
 toroidal phase-shifter, in rectangular waveguide 96
 waveguide toroidal phase-shifter 102–103
finite element method (FEM) 178
first circulation condition
 E-plane waveguide wye junction 251–252
 calculations of eigenvalues 253–254
 Dicke eigenvalue solution 247–248
 eigen-networks 244–246
 E-plane geometry 249–251
 pass band characteristic plane 246–247
 reflection eigenvalue diagrams, of three-port junction circulator 242–244
 scattering matrix, of reciprocal E-plane three-port Y-junction 240–242
 schematic diagram 240
 stop band characteristic plane 246–249
H-plane turnstile waveguide circulator 217
 bandpass frequency, of turnstile junction 219–221
 FE adjustment 224–230
 FE algorithm 222–224
 in-phase and counterrotating modes, of turnstile junction 221–222
 integrated substrate waveguide circulator 219
 reentrant turnstile junction, in standard WR75 waveguide 230, 231
 reference plane 222, 223
 split frequencies, of gyromagnetic resonators 233–236
 susceptance slope parameter of degree-1 junction 230, 232
 four-port turnstile junction nonreciprocal 187
 reciprocal 186
free space permeability 101
frequency response, of two-port planar circuits
 band elimination filter, decomposition of 162, 164
 bilinear transformation 163
 reflection coefficient 165
 stripline dipolar switch 165
 stripline switch, using puck/plug half-spaces 166–168
 transmission coefficient 163
 two-port gyromagnetic dipolar switch 164
 two-port isotropic stripline band elimination filter 162

\[g \]
gap-dependent dielectric constant 138
Green’s theorem 159
 gyrator conductance 207–208
 gyrator network 27–29
 gyromagnetic circular waveguides 208–209
 gyromagnetic cutoff space 179–180
 gyromagnetic insulator 5
 gyromagnetic medium 19
 gyromagnetic resonators closed composite 197
 practical 196
 single wire loop 257
Split frequencies of characteristic equation	233	
Split frequencies of H-plane waveguide tee junction	230, 232	
Frequency responses	235	
Frequency responses of demagnetized pass and stop bands	148–149	
Gyromagnetic resonator, saturation magnetization	236	
Gyromagnetic resonator, saturation magnetization	294	
Quality factor	234, 236	
Scalar counterrotating permeabilities, eigenvalue diagrams	233, 234	
Scalar counterrotating permeabilities, eigenvalue diagrams	146–147	
Quality factor	234, 236	
Gyromagnetic resonator, saturation magnetization	236	
Scalar counterrotating permeabilities, eigenvalue diagrams	233, 234	
Scalar counterrotating permeabilities, eigenvalue diagrams	233, 234	
Turnstile circulator	297	
Turnstile circulator	297	
Up/down magnetization	261–262	
Gyrotropy	259	
H	Ideal circulator	189
H-plane configuration	88	
H-plane junction, Altman planes	289–290	
H-plane reciprocal tee junction	286–289	
H-plane turnstile junction circulator	188	
H-plane turnstile waveguide circulator, first circulation condition	217	
Bandpass frequency, of turnstile junction	219–221	
FE adjustment	224–230	
FE algorithm	222–224	
In-phase and counterrotating modes, of turnstile junction	221–222	
Integrated substrate waveguide circulator	219	
Reentrant turnstile junction, in standard WR75 waveguide	230, 231	
Calculated and measured frequency responses	230, 231	
Smith chart solution	230, 231	
Reference plane	222, 223	
Split frequencies, of gyromagnetic resonators	233–236	
Split frequencies, of gyromagnetic resonators	233–236	
Smith chart solution	230, 231	
Reference plane	222, 223	
Split frequencies, of gyromagnetic resonators	233–236	
Smith chart solution	230, 231	
Reference plane	222, 223	
Split frequencies, of gyromagnetic resonators	233–236	

h
- Half dielectric-filled coaxial line | 84
- Horizontal/vertical linear polarization | 50
- H-plane configuration | 88
- H-plane junction, Altman planes | 289–290
- H-plane reciprocal tee junction | 286–289
- H-plane turnstile junction circulator | 188
- H-plane turnstile waveguide circulator, first circulation condition | 217
- Bandpass frequency, of turnstile junction | 219–221
- FE adjustment | 224–230
- FE algorithm | 222–224
- In-phase and counterrotating modes, of turnstile junction | 221–222
- Integrated substrate waveguide circulator | 219
- Reentrant turnstile junction, in standard WR75 waveguide |
- Calculated and measured frequency responses | 230, 231
- Smith chart solution | 230, 231
- Reference plane | 222, 223
- Split frequencies, of gyromagnetic resonators | 233–236

i
- Susceptance slope parameter of degree-1 junction | 230, 232
- H-plane waveguide tee junction | 230, 232
- Demagnetized pass and stop bands | 148–149
- Eigen-networks | 146–147
- Eigenvalue diagrams, small-and-large-gap | 144–145
- Hysteresis loop | 9
- Display | 9–11
- Latching phase shifter | 9

j
- Junction circulators | 257–258
- Latched prism resonator | 257–258
- One-port complex gyrator circuit | 265
- With up and down magnetization | 274–275

l
- Lagrange interpolation polynomials | 160
- Large-gap demagnetized geometry | 137
- Latched quasi-TEM phase-shifters | 91–92
latching circuits, construction of 106–107
linear simultaneous equations 160
LS modes limit waveguide bandwidths 98–99

magnetic circuits
using major hysteresis loop
hysteresis loop, of latching phase-shifter 106
microwave ferrite phase-shifters 103
standing wave solution, of three-port circulators 8
waveguide circulators 7
using minor hysteresis loops
hysteresis loop, of latching phase-shifter 106
microwave ferrite phase-shifters 103
magnetic flux densities 273
magnetized ferrite-loaded transmission line 103
magnetized ferrite medium, coupled and normal modes
circularly polarized waves 73
clockwise and anticlockwise, circularly polarized waves
yields 72
orthogonal linearly polarized waves 72
vertical and horizontal, linear polarized waves 72
magnetostatic problem 273–274
maximum power transfer 206
Maxwell’s equations 20, 40
Maxwell’s two curl equations 21
microstrip branch line coupler 306
microstrip configurations 123
microstrip triangular resonator 181
microwave switching, using junction circulators
cylindrical resonator, shape factor 15–16
externally latched junction circulators 7
internally latched junction circulators 7
magnetic circuit, major hysteresis loop 8–9
magnetostatic problem 13–14
multiwire magnetostatic problem 14–15
standing wave solution, resonators 7–8
switched junction circulator 1–4
switching coefficient, of magnetization 11–13
turnstile circulator 4–5
midband frequency (f0) 82
mode transducers/quarter-wave plates 49
modified Bessel function 195
mutual impedance, two-port planar circuit 154, 156

n
90° directional coupler
broadband multi-branch coupler 308
four-port circuit 305
microstrip branch line coupler 306
90° hybrids power divider 311–312
nonreciprocal circular polarizer, elliptical gyromagnetic waveguide
elliptical Faraday rotator 77
nonreciprocal coupling 78
reciprocal coupling 78
nonreciprocal coaxial transmission line 83, 84
nonreciprocal coupling 78
nonreciprocal ferrite devices 37
nonreciprocal ferrite quarter-wave plates
birefringence
cutoff frequency 70
direct magnetic field intensity 65, 67
quadrature magnetic coil arrangement 68
quadruple coil geometry 68
round birefringent waveguide 69
circular polarizer, elliptical gyromagnetic waveguide
elliptical Faraday rotator 77
nonreciprocal coupling 78
reciprocal coupling 78
circulator representation 71–72
circulators and switches
ferrite phase-shifter circuit 75
switchable circular polarizer 76
two-mode transducers 76, 77
four-port circulator 71
magnetized ferrite medium, coupled and normal modes
circularly polarized waves 73
clockwise and anticlockwise, circularly polarized waves yields 72
orthogonal linearly polarized waves 72
vertical and horizontal, linear polarized waves 72
variable phase-shifters 73–75
nonreciprocal microwave coupled wave theory, of Faraday rotation 32–33
Faraday rotation 20–25
isolator 29–30
magnetic variables 25–27
Faraday rotation-type phase shifter 31–32
four-port Faraday rotation circulator 30–31
gyrator network 27–29
partially ferrite-filled circular waveguide 33–34
normalized bandwidth (BW) 82
normalized differential phase-shift 120
n-port planar circuits, using finite elements 160–161
octave band frequency 120
odd demagnetized eigen-network 132
odd magnetized eigen-network 132
one-port homogeneous circuit 153
180° waveguide hybrid network 314–318
3 dB hybrids 318
Magic-tee 315, 316
on/off and off/on two-port H-plane waveguide
demagnetized pass and stop bands 148–149
eigen-networks, H-plane tee junction 146–147
eigenvalue algorithm 147–148
even and odd eigenvector 141
Faraday rotator 138
large-gap demagnetized geometry operations 140–141
phenomenological description 142–143
shunt H-plane tee junction
magnetized and demagnetized pass band 139, 140
magnetized and demagnetized stop band 139, 140
shunt circuit 138
two-layer quasi-planar resonator 137
open dielectric cavity resonator
characteristic equation 196, 198
closed composite gyromagnetic resonator, circuit topology of 197
open dielectric cavity resonator (cont’d)
coupled quarter-wave long ferrite or 197 gap factor 198 practical gyromagnetic resonator 196 quarter-wave long resonators, single and pairs of 198, 199 open dielectric waveguide 193–196 orthogonal linearly polarized waves 72 orthogonal phase constants 59 out-of-phase in-space quadrature mode 55, 56

q
quality factor
gyromagnetic resonator, up/down magnetization 261–262 junction circulators 274–275 turnstile circulator 207–208, 211–212 of wired junction 266 quarter-wave long resonators 198, 199 quasi-static approximation 199

r
radial composite resonator 298 reciprocal coupling 78 reciprocal quarter-wave plates anticlockwise circular polarizations 50 clockwise circular polarizations 50 coupled mode theory 53–57 normal modes 53 orthogonal polarizations 55 scattering matrix 54 transmission variables 57 four-port network 51 horizontal/vertical linear polarization 50 input and output polarizations 53 phase constants, using cavity method dielectric constants, of round waveguide 60, 61 dispersion effects 60 orthogonal phase constants 59 port nomenclature 51 scattering matrix 54 variable rotor power divider
Index

input and output waves, half-wave plate 62
rotary vane phase-shifter 63
waveguide model 49
dielectric constant 59
inhomogenous and homogenous waveguide 58
rectangular waveguide
 backward direction, of propagation 39
 forward direction, of propagation 39
TE01 mode 37
three field components 38
reentrant and inverted reentrant ferrite switches 138
reference plane 222, 223
reflection coefficient 223
stop band characteristic plane 247
ridge waveguide differential phase-shifter
circulator 90
coaxial ferrite phase-shifter 88
ferrimagnetic resonance 87
H-plane configuration 88
nonreciprocal, using closed ferrite magnetic circuits 92
WRD200, 89
rotary vane phase-shifter 63
second circulation condition, turnstile junction circulator
complex gyrator of 204–207
eigen-network of 209–211
gyrator conductance 207–208
gyromagnetic waveguides
 propagation 208–209
 quality factor of 207–208, 211–212
susceptance slope parameter 207–208, 213
self-impedance 159, 160
septum-loaded H-plane waveguide 292–293
series tee junction 128
shape factor
 cylindrical resonator 15–16
 tri-toroidal resonator 262–264
shunt circuit 138
single quarter-wave long resonator 249, 250
single turnstile resonator
 three-port E-plane turnstile circulator 189
 waveguide junction circulators 204, 218
 single turnstile resonators 218
 small-and large-gap, eigenvalue diagrams 144–145
split frequency 233–236
cavity gyromagnetic resonators 275
cavity resonator, up/down magnetization 260–261
planar gyromagnetic resonators 275
 prism resonator, up and down magnetization 276–277
tri-toroidal cavity 277–278
split phase constants, twin slab ferrite phase-shifter 99–102
squareness ratio 264
stepped impedance transformer 56
stopband condition 131
stripline circuit 155

S
calar permeability 118, 119
scattering matrix 54, 186
bilinear relation 190
eigenvalue diagram
 ideal three-port junction circulator 192
 reciprocal three-port junction 192
H-plane junction 242
of reciprocal E-plane three-port Y-junction 240–242
Index

stripline edge mode phase-shifter 81
field displacement 90
planar circuits 90
stripline switch, using puck/plug half-spaces 166–168
susceptance slope parameter 207–208, 213
switched junction circulator 1–4
current and magnetic field, in ferrite disc 4
microwave phase shifter 2
standing wave patterns 3
two-step procedure 1
switching coefficient, of magnetization 11–13
switch resonator 263–264

t
TE01 mode 37
temperature compensation, composite circuits
tensor permeability 101
threefold symmetry, standing wave solution 7–8
three-port junction circulator
complex gyrator circuit 265–266
eigenvalue diagram 207
turnstile junction circulator
E-plane 189
H-plane 188
time-space quadrature 68
TM field patterns, of triangular planar resonator 180–182
circulation solutions 182–184
field components 182
toroidal phase-shifter, in rectangular waveguide 96
transmission coefficient 163, 223
transmission line theory 41
transverse magnetic (TM) mode 172
transverse x–y plane 41
tri-toroidal composite prism resonator 279–280
tri-toroidal resonator
prism resonator
go:metry of 258–259
shape factor of 262–264
waveguide ferrite switches 270–271
tri-toroidal wye resonator 280–282
turnstile arrangement 185
turnstile junction circulator 4–5
first circulation condition 200
cavity resonators, frequencies of 193
eigen-solutions 191
E-plane 189
H-plane 188
in-phase mode 198–200
nonreciprocal 187
open dielectric cavity resonator 196–198
open dielectric waveguide, effective dielectric constant of 193–196
reciprocal 186
reflection coefficient 189, 190
scattering matrix 190–192
second circulation condition
complex gyrator of 204–207
eigen-network of 209–211
gyrator conductance 207–208
gyromagnetic waveguides propagation 208–209
quality factor of 207–208, 211–212
susceptance slope parameter 207–208, 213
two-mode transducers 62

U
unit elements (UEs) 128, 138, 175, 244

V
variable phase-shifters 73–75
variable power dividers 313–314
variable rotor power divider
input and output waves, half-wave plate 62
rotary vane phase-shifter 63
voltage standing wave ratio (VSWR) 82

W
wave admittance 114
waveguide ferrite switches
calculation and experiment 278–279
gyromagnetic resonators 269–270
junction circulators, up and down magnetization 274–275
magnetostatic problem 273–274
split frequencies
cavity gyromagnetic resonators 275
planar gyromagnetic resonators 275
prism resonator, up and down magnetization 276–277
tri-toroidal cavity 277–278
tri-toroidal composite prism resonator 279–280
tri-toroidal resonator 270–271
tri-toroidal wye resonator, up and down magnetization 280–282
wire carrying slot geometry 272–273
waveguide H-plane tee junction circulator
Altmann planes 289–290
characteristic planes 290–292
composite dielectric resonator 297–298
dielectric post resonator 294–297
eigenvalue problem of 286–289
gyromagnetic post resonator 296–297
septum-loaded H-plane waveguide 292–293
waveguide junction circulators 203–205
waveguide model 49
dielectric constant 59
inhomogenous and homogenous waveguide 58
Wilkinson power divider
even and odd mode coefficients 304
three port circuit 302
two way power divider 303
Wilkinson two way power divider 302, 303
wire carrying slot geometry 272–273
wired junction 266
wye resonator 171
cutoff space 172–174
equipotential lines, of dominant mode 173
gyromagnetic cutoff space 179–180
resonant frequencies, quasi-wye magnetized resonators 175–179
segmentation 173
standing wave circulation solution 174–175
symmetric mode 174
TM field patterns, of triangular planar resonator 180–182