Contents

Preface xiii
Acknowledgments xvii
List of Contributors xviii

1 Microwave Switching Using Junction Circulators 1
 Joseph Helszajn
 1.1 Microwave Switching Using Circulators 1
 1.2 The Operation of the Switched Junction Circulator 1
 1.3 The Turnstile Circulator 4
 1.4 Externally and Internally Latched Junction Circulators 7
 1.5 Standing Wave Solution of Resonators with Threefold Symmetry 7
 1.6 Magnetic Circuit Using Major Hysteresis Loop 8
 1.7 Display of Hysteresis Loop 9
 1.8 Switching Coefficient of Magnetization 11
 1.9 Magnetostatic Problem 13
 1.10 Multiwire Magnetostatic Problem 14
 1.11 Shape Factor of Cylindrical Resonator 15
 Bibliography 16

2 The Operation of Nonreciprocal Microwave Faraday Rotation Devices and Circulators 19
 Joseph Helszajn
 2.1 Introduction 19
 2.2 Faraday Rotation 20
 2.3 Magnetic Variables of Faraday Rotation Devices 25
 2.4 The Gyrator Network 27
 2.5 Faraday Rotation Isolator 29
 2.6 Four-port Faraday Rotation Circulator 30
 2.7 Nonreciprocal Faraday Rotation-type Phase Shifter 31
 2.8 Coupled Wave Theory of Faraday Rotation Section 32
 2.9 The Partially Ferrite-filled Circular Waveguide 33
 Bibliography 34
Contents

3 **Circular Polarization in Parallel Plate Waveguides** 37
 Joseph Helszajn
3.1 Circular Polarization in Rectangular Waveguide 37
3.2 Circular Polarization in Dielectric Loaded Parallel Plate Waveguide with Open Sidewalls 40
Bibliography 47

4 **Reciprocal Quarter-wave Plates in Circular Waveguides** 49
 Joseph Helszajn
4.1 Quarter-wave Plate 50
4.2 Coupled Mode Theory of Quarter-wave Plate 53
4.3 Effective Waveguide Model of Quarter-wave Plate 58
4.4 Phase Constants of Quarter-wave Plate Using the Cavity Method 59
4.5 Variable Rotor Power Divider 62
Bibliography 63

5 **Nonreciprocal Ferrite Quarter-wave Plates** 65
 Joseph Helszajn
5.1 Introduction 65
5.2 Birefringence 65
5.3 Nonreciprocal Quarter-wave Plate Using the Birefringence Effect 67
5.4 Circulator Representation of Nonreciprocal Quarter-wave Plates 71
5.5 Coupled and Normal Modes in Magnetized Ferrite Medium 72
5.6 Variable Phase-shifters Employing Birefringent, Faraday Rotation, and Dielectric Half-wave Plates 73
5.7 Circulators and Switches Using Nonreciprocal Quarter-wave Plates 76
5.8 Nonreciprocal Circular Polarizer Using Elliptical Gyromagnetic Waveguide 77
Bibliography 79

6 **Ridge, Coaxial, and Stripline Phase-shifters** 81
 Joseph Helszajn
6.1 Differential Phase-shift, Phase Deviation, and Figure of Merit of Ferrite Phase-shifter 82
6.2 Coaxial Differential Phase-shifter 82
6.3 Ridge Waveguide Differential Phase-shifter 88
6.4 The Stripline Edge Mode Phase-shifter 90
6.5 Latched Quasi-TEM Phase-shifters 91
Bibliography 92
Finite Element Adjustment of the Rectangular Waveguide-latched Differential Phase-shifter

Joseph Helszajn and Mark McKay

Introduction 95

FE Discretization of Rectangular Waveguide Phase-shifters 97

LS Modes Limit Waveguide Bandwidths 98

Cutoff Numbers and Split Phase Constants of a Twin Slab Ferrite Phase-shifter 99

The Waveguide Toroidal Phase-shifter 102

Industrial Practice 103

Magnetic Circuits Using Major and Minor Hysteresis Loops 103

Construction of Latching Circuits 106

Temperature Compensation Using Composite Circuits 107

Bibliography 109

Edge Mode Phase-shifter

Joseph Helszajn and Henry Downs

Edge Mode Effect 112

Edge Mode Characteristic Equation 115

Fields and Power in Edge Mode Devices 115

Circular Polarization and the Edge Mode Effect 118

Edge Mode Phase-shifter 120

Edge Mode Isolators, Phase-shifters, and Circulators 123

Bibliography 124

The Two-port On/Off H-plane Waveguide Turnstile Gyromagnetic Switch

Joseph Helszajn, Mark McKay, Alicia Casanueva, and Angel Mediavilla Sánchez

Introduction 127

Two-port H-plane Turnstile On/Off Switch 127

Even and Odd Eigenvectors of E-plane Waveguide Tee Junction 129

Eigenvalue Adjustment of Turnstile Plane Switch 130

Eigen-networks 132

Numerical Adjustments of Passbands 133

An Off/On H-plane Switch 134

Bibliography 136

Off/On and On/Off Two-port E-plane Waveguide Switches Using Turnstile Resonators

Joseph Helszajn, Mark McKay, and John Sharp

Introduction 137

The Shunt E-plane Tee Junction 138
10.3 Operation of Off/On and On/Off E-plane Switches 140
10.4 Even and Odd Eigenvector of H-plane Waveguide Tee Junction 141
10.5 Phenomenological Description of Two-port Off/On and On/Off Switches 142
10.6 Eigenvalue Diagrams of Small- and Large-gap E-plane Waveguide Tee Junction 144
10.7 Eigenvalue Diagrams of E-plane Waveguide Tee Junction 145
10.8 Eigen-networks of E-plane Tee Junction 146
10.9 Eigenvalue Algorithm 147
10.10 Pass and Stop Bands in Demagnetized E-plane Waveguide Tee Junction 148
Bibliography 150

Joseph Helszajn and David J. Lynch
11.1 Introduction 153
11.2 Impedance and Admittance Matrices from Mutual Energy Consideration 154
11.3 Impedance and Admittance Matrices for Reciprocal Planar Circuits 157
11.4 Immittance Matrices of n-Port Planar Circuits Using Finite Elements 160
11.5 Frequency Response of Two-port Planar Circuits Using the Mutual Energy–Finite Element Method 161
11.6 Stripline Switch Using Puck/Plug Half-spaces 166
Bibliography 169

12 Standing Wave Solutions and Cutoff Numbers of Planar WYE and Equilateral Triangle Resonators 171
Joseph Helszajn
12.1 Introduction 171
12.2 Cutoff Space of WYE Resonator 172
12.3 Standing Wave Circulation Solution of WYE Resonator 174
12.4 Resonant Frequencies of Quasi-wye Magnetized Resonators 175
12.5 The Gyromagnetic Cutoff Space 179
12.6 TM Field Patterns of Triangular Planar Resonator 180
12.7 TM1,0,−1 Field Components of Triangular Planar Resonator 182
12.8 Circulation Solutions 182
Bibliography 184
13 The Turnstile Junction Circulator: First Circulation Condition 185
Joseph Helszajn
13.1 Introduction 185
13.2 The Four-port Turnstile Junction Circulator 186
13.3 The Turnstile Junction Circulator 188
13.4 Scattering Matrix 190
13.5 Frequencies of Cavity Resonators 193
13.6 Effective Dielectric Constant of Open Dielectric Waveguide 193
13.7 The Open Dielectric Cavity Resonator 196
13.8 The In-phase Mode 198
13.9 First Circulation Condition 200
Bibliography 200

14 The Turnstile Junction Circulator: Second Circulation Condition 203
Joseph Helszajn and Mark McKay
14.1 Introduction 203
14.2 Complex Gyrator of Turnstile Circulator 204
14.3 Susceptance Slope Parameter, Gyrator Conductance, and Quality Factor 207
14.4 Propagation in Gyromagnetic Waveguides 208
14.5 Eigen-network of Turnstile Circulator 209
14.6 The Quality Factor of the Turnstile Circulator 211
14.7 Susceptance Slope Parameter of Turnstile Junction 213
Bibliography 213

15 A Finite-Element Algorithm for the Adjustment of the First Circulation Condition of the H-plane Turnstile Waveguide Circulator 217
Joseph Helszajn
15.1 Introduction 217
15.2 Bandpass Frequency of a Turnstile Junction 219
15.3 In-phase and Counterrotating Modes of Turnstile Junction 221
15.4 Reference Plane 222
15.5 FE Algorithm 222
15.6 FE Adjustment 224
15.7 The Reentrant Turnstile Junction in Standard WR75 Waveguide 230
15.8 Susceptance Slope Parameter of Degree-1 Junction 230
15.9 Split Frequencies of Gyromagnetic Resonators 233
References 236
18.6 Split Frequencies of Planar and Cavity Gyromagnetic Resonators 275
18.7 The Split Frequencies of Prism Resonator with Up and Down Magnetization 276
18.8 Exact Calculation of Split Frequencies in Tri-toroidal Cavity 277
18.9 Calculation and Experiment 278
18.10 Tri-toroidal Composite Prism Resonator 279
18.11 Tri-toroidal Wye Resonator with Up and Down Magnetization 280

Bibliography 282

19 The Waveguide H-plane Tee Junction Circulator Using a Composite Gyromagnetic Resonator 285
Joseph Helszajn
19.1 Introduction 285
19.2 Eigenvalue Problem of the H-plane Reciprocal Tee Junction 286
19.3 Electrically Symmetric H-plane Junction at the Altman Planes 289
19.4 Characteristic Planes 290
19.5 The Septum-loaded H-plane Waveguide 292
19.6 The Waveguide Tee Junction Using a Dielectric Post Resonator: First Circulation Condition 294
19.7 The Waveguide Tee Junction Circulator Using a Gyromagnetic Post Resonator: Second Circulation Condition 296
19.8 Composite Dielectric Resonator 297
Bibliography 299

20 0°, 90°, and 180° Passive Power Dividers 301
Joseph Helszajn and Mark McKay
20.1 Introduction 301
20.2 Wilkinson Power Divider 302
20.3 Even and Odd Mode Adjustment of the Wilkinson Power Divider 302
20.4 Scattering Matrix of 90° Directional Coupler 305
20.5 Even and Odd Mode Theory of Directional Couplers 309
20.6 Power Divider Using 90° Hybrids 311
20.7 Variable Power Dividers 313
20.8 180° Waveguide Hybrid Network 314
Bibliography 318

Index 321