Contents

Preface xiii

Contributors xv

1. Introduction to Hydrogen and Syngas Production and Purification Technologies 1
 Chunshan Song
 1.1 Importance of Hydrogen and Syngas Production 1
 1.2 Principles of Syngas and Hydrogen Production 4
 1.3 Options for Hydrogen and Syngas Production 6
 1.4 Hydrogen Energy and Fuel Cells 8
 1.5 Fuel Processing for Fuel Cells 9
 1.6 Sulfur Removal 10
 1.7 CO₂ Capture and Separation 11
 1.8 Scope of the Book 11
 Acknowledgments 12
 References 12

2. Catalytic Steam Reforming Technology for the Production of Hydrogen and Syngas 14
 Velu Subramani, Pradeeppkumar Sharma, Lingzhi Zhang, and Ke Liu
 2.1 Introduction 14
 2.2 Steam Reforming of Light Hydrocarbons 17
 2.2.1 Steam Reforming of Natural Gas 17
 2.2.2 Steam Reforming of C₂–C₄ Hydrocarbons 36
 2.3 Steam Reforming of Liquid Hydrocarbons 46
 2.3.1 Chemistry 46
 2.3.2 Thermodynamics 47
 2.3.3 Catalyst 52
 2.3.4 Kinetics 58
 2.3.5 Mechanism 61
 2.3.6 Prereforming 61
 2.4 Steam Reforming of Alcohols 65
 2.4.1 Steam Reforming of Methanol (SRM) 65
 2.4.2 Steam Reforming of Ethanol (SRE) 77
 2.5 Carbon Formation and Catalyst Deactivation 106
8. Hydrogen Membrane Technologies and Application in Fuel Processing 357

David Edlund

8.1 Introduction 357
8.2 Fundamentals of Membrane-Based Separations 358
8.3 Membrane Purification for Hydrogen Energy and Fuel Cell Applications 363
 8.3.1 Product Hydrogen Purity 365
 8.3.2 Process Scale 367
 8.3.3 Energy Efficiency 368
8.4 Membrane Modules for Hydrogen Separation and Purification 369
8.5 Dense Metal Membranes 372
 8.5.1 Metal Membrane Durability and Selectivity 375
8.6 Integration of Reforming and Membrane-Based Purification 378
8.7 Commercialization Activities 380
References 383

9. CO₂-Selective Membranes for Hydrogen Fuel Processing 385

Jin Huang, Jian Zou, and W.S. Winston Ho

9.1 Introduction 385
9.2 Synthesis of Novel CO₂-Selective Membranes 388
9.3 Model Description 389
9.4 Results and Discussion 391
 9.4.1 Transport Properties of CO₂-Selective Membrane 391
 9.4.2 Modeling Predictions 400
9.5 Conclusions 408
Glossary 410
Acknowledgments 410
References 411

10. Pressure Swing Adsorption Technology for Hydrogen Production 414

Shivaji Sircar and Timothy C. Golden

10.1 Introduction 414
10.2 PSA Processes for Hydrogen Purification 418
 10.2.1 PSA Processes for Production of Hydrogen Only 418
 10.2.2 Process for Coproduction of Hydrogen and Carbon Dioxide 422
 10.2.3 Processes for the Production of Ammonia Synthesis Gas 425
10.3 Adsorbents for Hydrogen PSA Processes 426
 10.3.1 Adsorbents for Bulk CO₂ Removal 427
 10.3.2 Adsorbents for Dilute CO and N₂ Removal 429
 10.3.3 Adsorbents for Dilute CH₄ Removal 432
 10.3.4 Adsorbents for C₁₋₄ Hydrocarbon Removal 432
 10.3.5 Other Adsorbent and Related Improvements in the H₂ PSA 434
10.4 Future Trends for Hydrogen PSA 435
10.4.1 RPSA Cycles for Hydrogen Purification 436
10.4.2 Structured Adsorbents 438
10.4.3 Sorption-Enhanced Reaction Process (SERP) for H₂ Production 439
10.5 PSA Process Reliability 441
10.6 Improved Hydrogen Recovery by PSA Processes 441
10.6.1 Integration with Additional PSA System 441
10.6.2 Hybrid PSA-Adsorbent Membrane System 442
10.7 Engineering Process Design 444
10.8 Summary 447
References 447

11. Integration of H₂/Syngas Production Technologies with Future Energy Systems 451
Weil Wei, Parag Kulkarni, and Ke Liu

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Overview of Future Energy Systems and Challenges</td>
<td>451</td>
</tr>
<tr>
<td>11.2</td>
<td>Application of Reforming-Based Syngas Technology</td>
<td>454</td>
</tr>
<tr>
<td>11.2.1</td>
<td>NGCC Plants</td>
<td>454</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Integration of H₂/Syngas Production Technologies in NGCC Plants</td>
<td>455</td>
</tr>
<tr>
<td>11.3</td>
<td>Application of Gasification-Based Syngas Technology</td>
<td>465</td>
</tr>
<tr>
<td>11.3.1</td>
<td>IGCC Plant</td>
<td>468</td>
</tr>
<tr>
<td>11.4</td>
<td>Application of H₂/Syngas Generation Technology to Liquid Fuels</td>
<td>477</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Coal-to-H₂ Process Description</td>
<td>479</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Coal-to-Hydrogen System Performance and Economics</td>
<td>481</td>
</tr>
<tr>
<td>11.5</td>
<td>Summary</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>483</td>
</tr>
</tbody>
</table>

12. Coal and Syngas to Liquids 486
Ke Liu, Zhe Cui, Wei Chen, and Lingzhi Zhang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Overview and History of Coal to Liquids (CTL)</td>
<td>486</td>
</tr>
<tr>
<td>12.2</td>
<td>Direct Coal Liquefaction (DCTL)</td>
<td>488</td>
</tr>
<tr>
<td>12.2.1</td>
<td>DCTL Process</td>
<td>488</td>
</tr>
<tr>
<td>12.2.2</td>
<td>The Kohleol Process</td>
<td>490</td>
</tr>
<tr>
<td>12.2.3</td>
<td>NEDOL (NEDO Liquefaction) Process</td>
<td>491</td>
</tr>
<tr>
<td>12.2.4</td>
<td>The HTI-Coal Process</td>
<td>494</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Other Single-Stage Processes</td>
<td>495</td>
</tr>
<tr>
<td>12.3</td>
<td>Indirect Coal to Liquid (ICTL)</td>
<td>496</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Introduction</td>
<td>496</td>
</tr>
<tr>
<td>12.3.2</td>
<td>FT Synthesis</td>
<td>498</td>
</tr>
<tr>
<td>12.4</td>
<td>Mobil Methanol to Gasoline (MTG)</td>
<td>510</td>
</tr>
<tr>
<td>12.5</td>
<td>SMDS</td>
<td>511</td>
</tr>
</tbody>
</table>
12.6 Hybrid Coal Liquefaction 512
12.7 Coal to Methanol 513
 12.7.1 Introduction of Methanol Synthesis 513
 12.7.2 Methanol Synthesis Catalysts 514
 12.7.3 Methanol Synthesis Reactor Systems 514
 12.7.4 Liquid-Phase Methanol (LPMEOH™) Process 516
12.8 Coal to Dimethyl Ether (DME) 519
References 520

Index 522