Index

ABB Lummus, 242
acid gas removal (AGR), 190, 468
diethanolamine (DEA), 471
methyldiethanolamine (MDEA), 470–471, 480
ADIP, 288–291
adsorption, 418, 420, 423–424
activated carbon (AC), 262–264
pressure swing (PSA), 7, 18, 329–330, 357–358, 367, 414–448, 480
basic concept, 414–415
for bulk CO₂ removal, 427–429
for C₁-C₄ hydrocarbon removal, 432–434
for dilute CH₄ removal, 432
for dilute CO and N₂ removal, 429–432
engineering process design, 444–447
future trends, 435–441
hybrid adsorbent membrane, 442–444
improvements, 441–444
integration, 441–442
for production of hydrogen only, 418–426
rapid (RPSA), 426, 436–438
reliability, 441
sorption-enhanced reaction process (SERP), 439–441
structured, 438–439
selective sulfur (PSU-SARS), 243–244
zeolite-based, 260–262
Advanced Refining, 236
advanced refining technologies (ART), 239
advanced sulphur removal (ASR), 296
Advantica, 110
AED. See atomic emission detector
AFCs. See fuel, cells, alkaline
AGR. See acid gas removal
Air Liquide S.A., 367
air separation unit (ASU), 458, 468–469
AkzoNobel, 227, 236–238, 241
Alcoa Industrial Chemicals, 253
alumina, 372, 378
Amine Guard FS Process, 281
ammonia synthesis, 14, 128, 156
Anderson–Schultz–Flory (ASF) distribution model, 503–504
Argonne National Laboratory, 137
aromatics, 477
Arrhenius equation, 60
ART. See advanced refining technologies
ASF. See Anderson–Schultz–Flory distribution model
ash content, and fusion temperature of ATF, 184
-slag chemistry, 166–168
ASR. See advanced sulphur removal
ASU. See air separation unit
atomic emission detector (AED), 224
ATR. See reforming, autothermal
AZEP. See power plants, advanced zero emission
BA. See basic (BA) model
Ballard, 137
Baltimore Gas Company, 158
BASF Catalysts, LLC, 21, 282, 313, 345
basic (BA) model, 23–24
Battelle Memorial Institute, 36
BDS. See desulphurization, bio-

Hydrogen and Syngas Production and Purification Technologies, Edited by Ke Liu, Chunshan Song and Velu Subramani
Copyright © 2010 American Institute of Chemical Engineers

522
bed
 A and B, 422–426
 size factor (BSF), 436
 weighted-average temperature (WABT), 238
Bergius process, 489
BG Technology, Ltd., 110
BHA Technologies, 389
 Teflon, 388–389, 393–394
Bingham plastics, 182
biodiesel, 138
biomass, 6, 486
 -to-liquid (BTL), 12, 453
bio-oil, 138
Black & Veatch Irritchard, Inc., 253
“black mud,” 291
Boudouard reaction, 18, 107, 146, 165, 174
 reverse, 165
British Gas PLC (BGL), 159
BSF. See bed, size factor
BTL. See biomass, -to-liquids
BWX Technologies, 137
Calgon Corporation, 427
carbohydrates, 6
carbon
 capture and separation, 11
 and CO₂, 165, 423
 emissions, 9
 formation, 5, 14–58, 106–109
 and oxygen, 164
 powder activated (PAC), 329–330
 selective oxidation, 6
 and steam, 165
carbonization, 6
Carnegie Mellon University (CMU), 296
catalysts. See specific activity, process or technology
Catalytica Advanced Technologies, 137
Cathage Hydrocol, 497
CC. See power plants, combined cycle
CCRI. See China Coal Research Institute
CDTech, 231–232
Centinel, 239
Century, 239
CES. See Clean Energy Systems
CFB. See reactor, circulating fluidized-bed
 Chemical & Engineering News, 349

Chemical Engineering Handbook (Perry), 331
chemical looping combustion (CLC), 458, 461
chemical reaction processes, 7
Chevron, 239
China Coal Research Institute (CCRI), 487
Clariant GmbH, 283
Claus process, 471
CLC. See chemical looping combustion
Clean Coal Technology Program, 515
Clean Energy Systems (CES), 459
cleanup
 hot and warm gas, 299–300
 hot gas (HGCU), 214, 291–293; see also desulphurization, dry
CMU. See Carnegie Mellon University
carbon, 1–4, 6, 127, 272–275, 466, 478; see also electricity; power plants
 Adaro, 492
to DME, 519–520
to H₂, 479–483
 Keshena, 492
 Prosper, 491
 pulverized (PC), 494
 slurry, 182, 182–184
solvent-refined (SRC), 495
 Tanito Harum, 492
tar, 161–162
 -to-liquids (CTL), 12, 209, 453, 466–468, 486–520
direct (DCTL), 488–496
 Exxon Donor Solvent (EDS) process, 487
 H-process, 487
 HTI-process, 494–495
 hybrid liquification, 512–513
 indirect (ICTL), 486, 496–510
 Kohleol process, 490–491
 methanol-to-gasoline (MTG), 510–511
 NEDOL process, 491–494, 492–494
 single-stages processes, 495–496
 SMDS, 511–512
 -to-methanol (CTM), 513–516
catalysts, 514
 liquid-phase methanol (LPMEOH)
 process, 516–519
 reactor, 514–516
coal (cont’d)
 -water slurry (CWS), 155
 Yilan, 492

coefficient of thermal expansion (CTE), 371–372, 377

Cogas process, 160

coke formation, 150

cold gas heating value, 173

Compressed Gas Association, 365

computational fluid dynamics (CFD), 33, 208

ConocoPhillips, 177, 247, 258, 496

contaminants, removing trace. See oxidation, preferential

conversion, types of, 6

loss, 4

CPO. See oxidation, catalytic partial

CPR. See reactors, catalytic plate

Criterion Catalyst, 236, 239, 242

crude oil, 2, 14, 478
 U.S. daily consumption, 477

CTL. See coal, -to-liquid

CTM. See coal, -to-methanol

CWS. See coal, -water slurry

cycle
 Brayton, 458
 Carnot, 10
 Graz, 458–459
 Matiant (combined), 458–459
 Rankin, 458
 thermochemical photocatalytic splitting, 6
 water, 458

Datang International Power Generation Co., 492

DCTL. See coal, -to-liquids, direct

DEA. See acid gas removal, dietheanolamine
deactivation catalyst, 106–109
decomposition
 methane, 138, 146
 pyrolytic, 6
dehydrocyclization, 58
dehydrogenation, 58
density functional theory (DFT), 30
deposition
 carbon, 138–139
 coke, 19
depressurization, 415, 418–421, 423–424, 439

Destec, 202
desulphurization, 10, 18, 47, 219–300
 absorption, 243–264
 bio-(BDS), 224
 catalytic distillation for, 231–233
 challenges in deep, 219–225
 of coal gasification gas, 272–293
 dry, 291–293
 extractive (EDS), 224
 hydrogen. See hydrogen, desulphurization
 oxidative (ODS), 224, 293–298
 post-reformer, 264–272
 by solvents, 275
 chemical, 275–283
 hydride, 288
 miscellaneous, 290–291
 physical, 283–291
 ultra-deep, 243
dimethyl ether, 4
disproportionation (CO). See Boudouard reaction
distillates, 477
dodecane, 46–49, 65

DRIFT. See spectroscopy, diffuse
 reflectance infrared Fourier transform
dry-feeding, 194–195. See also gasification,
 Shell coal, with dry feeding

DT. See temperature, deformation

DuPont, 388–389

East China University of Science and Technology (ECUST), 198

Eastman Chemical Company, 214–215, 516

ECUST. See East China University of Science and Technology

EDS. See desulphurization, extractive
efficiency, measuring theoretical, 10

Ein Unternhm von ThyssenKrupp
 Technologies (Uhde), 275

electricity
 and coal, 451–452
 generation, by fuel type, 453
 input and output, in U.S. (2007), 4

electrolysis, 6, 15, 219

Eley–Rideal (ER) mechanism, 24
energy
 challenges, 1
 production efficiency, 1
 renewable, 1–4
 supply and demand, in U.S. (2007), 1–3
Engelhard Corporation, 294, 323, 432
enthalpy, 10, 19
ER. See Eley–Rideal (ER) mechanism
ethane, 36–47
ethanol, 4, 65, 138
ethylene, 47
evacuation, 423, 439
Exomer process, 230
ExxonMobil, 137, 226–230, 236–237, 282, 290
Finkian diffusion, 168
Fischer–Tropsch (FT) synthesis, 11–12, 156–157, 210, 275, 313, 318–319, 466, 486, 497–510
high-temperature (HTFT), 505, 508
low-temperature (LTFT), 505–506, 508
Flexsorb, 282, 290–291
FLUENT, 33
fluorescence, ultraviolet, 224
fossil fuels, 1, 4, 6, 220, 272
 and energy production, 451–452
FPD. See chromatography, flame photometric detector
FT. See Fischer–Tropsch synthesis
fuel
 cells, 8–9, 128–129
 alkaline (AFCs), 9, 363, 378
 inefficiencies, 368
 measuring theoretical efficiency, 10
 molten carbonate (MCFC), 10, 244
 phosphoric acid (PAFC), 9–10, 137, 221
 processing, 9–11
 proton exchange membrane (PEMFC), 9–10, 34, 36, 136–137, 221, 243, 265, 271, 273, 363–365, 378, 381
 solid oxide (SOFC), 4, 9–10, 36, 219–220, 363
types, 9–10
 clean, 1
 transportation, 46–47, 128
Fuel Cell Handbook, 332
“Fusibility of Coal and Coke Ash” (ASTM D1857), 206
gas, 15, 46, 128, 136–137, 226–233, 246–256, 477; see also acid gas removal
“blue water,” 127
chromatography (GC), 224
 flame photometric detector (GC-FPD), 224
 pulsed flame photometric detector (GC-PFPD), 224
greenhouse, 11
 hourly space velocity (GHSV), 337, 341, 345, 408
liquefied petroleum (LPG), 36, 489, 519
low-temperature cooling (LTGC), 468
natural. See natural gas producer, 158
 -solid reaction, 173–174
synthesis. See syngas
to-liquid (GTL), 128, 453
“town,” 14, 127
turbine (GT), 156
gasification, 6, 15; see also specific processes
carbon, 107
catalytic, 157
char, 174, 179–181, 184
coal, 5, 150–216
 chemistry, 159–161
 and coal polygeneration, 215–216
 history, 159
 and pyrolysis, 161–163
 and volatile combustion, 163–166
efficiency, 182–184
entrained-flow, 179
feedstock, 156–157
General Electric (GE), 179–187
integrated combined cycle (IGCC), 4, 128, 157, 273, 283
kinetics, 173–176
Lurgi, 158, 203–204, 497
Shell coal, 188–195
steam, 5, 157
technological challenges, 206–210
technologies summary, 204
Texaco (TGP), 178–187
thermodynamics, 169–173
worldwide capacity, 466
gasifiers
classification, 176–178
ConocoPhillips, 202–203
gasifiers (cont’d)
East China University of Science and Technology (ECUST), 198
entrained-bed, 193, 206
fluidized-bed, 177, 199–202
moving and fixed bed, 177; see also
gasification, Lurgi
reactions, 166
TPRI, 199
GC. See gas, chromatography
GC-FPD. See gas, chromatography, flame
photometric detector
GC-PFPD. See gas, chromatography, pulsed
flame photometric detector
Gemini process, 424–426
General Electric (GE), 177, 179–187, 455
E500A, 389, 391, 497
Global Research, 134, 145
Infrastructure, 389
General Motors, 137, 345, 352
Genesis FuelTech, Inc., 381
geometric surface area (GSA), 347
GHSV. See gas, hourly space velocity
Gibbs and Cox, 137
Gibbs free energy, 10, 19, 169, 171
Grace Davison, 239
Group VII metal catalysts, 500–503
GSP, 177
ConocoPhillips gasifier, 202–203
East China University of Science and
Technology (ECUST) gasifier, 198
fluidized-bed gasifier, 199–202
gasification process, 195–204
Lurgi’s gasification technology, 203–204
TPRI gasifier, 199
GSSTFR. See reactor, gas-solid-solid
trickle-flow
GT. See gas, turbine
GTL. See gas, -to-liquid
hexadecane, 46–50
HGCU. See cleanup, hot gas
high-temperature Winkler (HTW) process,
159, 201, 205
HPST. See turbine, high-pressure, steam
HPT. See turbine, high-pressure
HRI. See Hydrocarbon Research Institute
HT. See temperature, hemispherical
HTFT. See Fischer–Tropsch (FT) synthesis,
high-temperature
HTI. See Hydrocarbon Technologies, Inc.
HTS. See reactor, high-temperature shift
HTT. See turbine, high-temperature
HTW. See high-temperature Winkler
(HTW) process
HTWGA. See water-gas shift, high
temperature
Hy9 Corporation, 374, 381
Hydrocarbon Research Institute (HRI),
494–495, 497
Hydrocarbon Technologies, Inc. (HTI), 487
hydrocarbons, 377
liquid, 133, 219, 295–298
fuels, 4, 5
steam reforming, 46–65
processing, 220
hydrocracking, 15, 58
hydrogasification, 157, 159
hydrogen
atomic, 7
demetallization (HDM), 128
denitrogenation (HDN), 128
desulphurization (HDS), 128, 225–243
advantages and disadvantages,
225–226
catalysts for ultralow sulphur, 233–239
deep, with octane recovery, 228–231
efficiency, 243
new catalyst formation, 231–233
reaction and processing tailoring,
239–241
ultradeep, 235
energy, 8–9, 14–15
as feedstock, 14
and fuel cells, 8–9
gaseous, current production capability, 414
liquid, grades, 365
membrane, 366–367
“merchant,” 365, 414
production, 1–8, 15
pure stream, 15
purification, 363–369
purity, 364
hydrogenation, 14, 58, 128, 156, 174
hydrogen/syngas production technologies integration, 451–483
and liquid fuels, 477–483
and reforming-based syngas technology CO₂ capture, 457–465
gasification-based, 465–477
natural gas/NGCC, 454–457
oxyfuel combustion, 458–460
hydrotreating, 15, 242
Hygas process, 160

ICC. See Institute of Coal Chemistry
ICE. See power plants, internal combustion engine
ICTL. See coal, -to-liquids, indirect
Idaho National Energy and Environment Laboratory (INEEL), 137
IdaTech, LLC, 368, 381
Idemitsu Co., Ltd., 54
IFP, 236
IGCC. See gasification, integrated combined cycle
Imhausen high-pressure, 496
INEEL. See Idaho National Energy and Environment Laboratory
InnovaTech, 52–54
Institute of Coal Chemistry (ICC), 520
International Energy Reports, 451
International Fuel Cell, 255
INTEVEP, 228–229
ion exchange
liquid-phase (LPIE), 254
solid-state (SSIE), 254
evapor-phase (VPIE), 254
IPST. See turbine, intermediate-pressure steam
ISAL, 228–230
isoctane, 46–49, 59–61
jet fuels, 46, 63–64, 256–258
Johnson Matthey, 21, 137

KBR. See Kellogg Brown and Root
Kellogg Brown and Root (KBR), 201
Kellogg-Rust-Westinghouse (KRW), 201–202
kerosene, 54, 64
Knudsen diffusion, 361
Koppers GmbH, 508
Kopplers-Totzek entrained-flow process, 158–159, 187
Krupp-Koppers, 187
KRW. See Kellogg-Rust-Westinghouse

Langmuir
adsorption isotherm, 75
Langmuir–Hinshelwood (LH), 23, 316–317, 342
Langmuir–Hinshelwood Houghen–Watson (LHHW), 59
LANL, 352
last-out, first-in (LOFIN) process, 421–422
L/D ratio. See ratio, length/diameter
LeChatelier’s principle, 439
LH. See Langmuir–Hinshelwood
LHHW. See Langmuir–Hinshelwood Houghen–Watson
London Gas, Light and Coke Company, 158
low-temperature shift (LTS) reaction, 18
reactor, 471
LPG. See gas, liquified petroleum
LPIE. See ion exchange, liquid-phase
LPM. See methanol, low-pressure
LPMEOH. See coal, -to-methanol, liquid-phase methanol
LPST. See turbine, low-pressure steam
LPT. See turbine, low-pressure
LTFT. See Fischer–Tropsch (FT) synthesis, low-temperature
LTGC. See gas, cooling, low-temperature gas
LTS. See low-temperature shift
Lurgi Energies und Umwet GmbH, 159, 285
mass spectroscopy (MS), 134
McDermott Technology, Inc. (MTI), 137
MCFCs. See fuel, cells, molten carbonate
MDEA. See acid gas removal, methyl diethanolamine
membrane reactor technology, 381
membrane. See hydrogen, purification, membrane
advantages, 358
-based separation, 330, 358–363, 369–372; see also hydrogen, purification, membrane
catalytic activity, 406
ceramic, 369–371
CO₂, 385–411
CO₂, and feed pressure, 393–394
CO₂, and gas water content, 394–395
CO₂, and temperature, 397–398
CO₂, H₂ selectivity, 402
CO₂, and permeability, 402–403
CO₂ modeling predictions, 400–408
CO₂ synthesis, 388–389
CO₂ transport, 391–400
commercialization, 380–382
dense metal, 358, 369–371, 381
facilitated transport, 387
failure, 375–378
HyPurium module, 368
inlet feed temperature, 403–406
inlet sweep temperature, 405–406
integration, 378–380, 381
ion-conductive, 358
ion-exchange, 387
MEDAL, 367
metal, 372–378
palladium, 372–373, 375–376, 378, 381–382, 388
permeability, 386
plate and frame, 370
polymeric, 358, 369–371, 381
porous, 358
PRISM, 367, 380–381
reactive carrier, 386–387
reactor, 379–380
selective surface flow (SSF), 442–444
selectivity, 386
shell and tube, 370
supported liquid (SLM), 387
and sweep-to-feed, 403
types, 358
Merichem, 230
Mesoscopic Device, 264
methanation, 58, 165–166, 357
methane, 17–36, 47, 107, 138, 157
decomposition, 19
and syngas, 17
methanol, 4, 5, 10, 14, 138, 156, 210, 285, 510
advantages, 65
decomposition, 74
dehydrogenation, 74
low-pressure (LPM), 515
Lurgi, 515–516
oxidative steam reforming of (OSRM), 66
synthesis, 11
microcoulometry, oxidative, 224
microscope
scanning electron (SEM), 391
transmission electron (TEM), 42
MITRE Corporation, 512
Mitretek, 481
modeling and simulation
factors in, 30–34
isothermal and nonisothermal, 31–32
MS. See mass spectroscopy
MSR. See reforming, steam, methane
MTG. See coal, -to-liquids, methanol-to-gasoline
naphtha, 46, 226–228
selective cat hydrofining (SCANfining), 226–227, 230
naphthenes, 477
National Energy Technology Laboratory (NETL), 244, 296
NATO F-76, 63
natural gas, 1–3, 5–6, 128, 137, 156, 225–226, 244–246, 293–295
chemistry of reforming, 130
combined cycle (NGCC), 128
and electricity generation, 454
as feedstock, 145
synthetic (SNG), 499
n-butane, 36–46, 108
NEBULA. See new bulk activity catalyst
NEDO. See New Energy and Industrial Technology Development Organization
NEDOL. See coal, -to-liquids, NEDOL process
Nernst–Planck equation, 387
NETL. See National Energy Technology Laboratory
new bulk activity (NEBULA) catalyst, 237–238
New Energy and Industrial Technology Development Organization (NEDO), 491–492
NexTech Materials, 323
NGCC. See natural gas, combined cycle (NGCC)
nickel, 20–21, 128, 500
Nippon Coal Oil Company, Ltd., 492
Nippon Ketjen, 237
Nissan, 137
NKK Corporation, 519
NORPAR-13, 57
nuclear power, 2–3, 128
OCTGain, 228–230
ODS. See desulfurization, oxidative
Office of Transportation Fuel Cell Program (DOE), 137
olefins, 498–500, 505
Osaka Gas, 244
OSRM. See methanol, oxidative steam reforming of
oxidation
catalytic partial (CPO), 129–151, 133–136, 137–138
mechanisms and kinetics, 146–147
nickel-based, 138–141, 146–147
precious metal, 142–149
and renewable fuels, 150–151
start-up and shutdown procedures, 149–150
status, 136–137
exothermic, 5
noncatalytic partial (POX), 130–151
homogeneous, 132–133
status, 136–137
partial (POX), 5, 15, 156, 391, 461–464
preferential (Prox), 18, 220, 329–353, 357
catalysts, 342–344
commercial, 352–353
reactions, 331–333
selective catalytic (SCO), 225
temperature-programmed (TPO), 107
oxygen stoichiometry, 332, 336–337, 346
oxygenates, 6
PAC. See carbon, powder activated
Pacific Gas and Electric, 137
Pacific Northwest National Laboratory, 74, 109, 110
PAFCs. See fuel, cells, phosphoric acid paraffins, 61, 477, 498–500, 511
PC. See coal, pulverized; power plants, pulverized coal
PDU. See process demonstration unit
PEMFCs. See fuel, cells, proton exchange membrane
petrochemicals, 477
petroleum, 1–4
Phillips Petroleum, 241, 258
Piperazine, 282
PNNL, 352
pollutants, 1
Poly bed process, 419–420, 425, 443–444, 446–447
Power and Energy Inc., 366, 381–382
power plants
advanced zero emission (AZEP), 458, 460–461
combined cycle (CC), 454–455, 465
electric, 4
hybrid DCTL/ICTL, 512
Integrated Gasification Combined Cycle (IGCC), 451–453, 468–477, 479; see also gasification, integrated combined cycle
internal combustion engine (ICE), 451
Natural Gas Combined Cycle (NGCC), 451, 453–454; see also natural gas, combined cycle
pulverized coal (PC), 451, 454, 468
total plant capital cost (TPC), 475–477
POX. See oxidation, noncatalytic partial; oxidation, partial
Precision Combustion, Inc. (PCI), 353
PRENFLO. See pressurized entrained flow
prereforming, 47
adiabatic, 63, 108–109
pressurization, 419, 421, 424, 439
pressurized entrained flow (PRENFLO), 194
Prime G+, 226–228
process demonstration unit (PDU), 492
processes. See also chemical reaction; low-pressure methanol; SASOL, Slurry-Phase Distillate Bergius, 489
Exxon Donor Solvent (EDS), 487
H-, 487
HTI-, 494–495
Imhausen high-pressure, 496
Kohleoel, 490–491
liquid-phase methanol, 513–516
SCANfining, 226–227, 230
propane, 6, 36–46
liqifed, 5
Prox. See oxidation, preferential
PSA. See adsorption, pressure swing
PSU-SARS. See adsorption, selective sulfur
purging, 415, 419, 421, 424
pyrolysis, 15, 106, 156
Questair Industries, Inc., 436–439
RAG. See Ruhrkohle AG
ratio
length/diameter (LD), 347–348
permeance (P/l), 386
steam-to-carbon (S/C), 18
surface area/volume (SA/V), 349
RCH. See Ruhchemie AG
reaction sites (STARS), 236–237
reactors
adiabatic, 514
Besser, 350
catalytic plate (CPR), 33
circulating fluidized-bed (CFB), 505
cost to methanol, 514–516
designing new configurations, 241–243
entrained-flow, 177
Fischer–Tropsch (FT), 486
gas-solid-solid trickle-flow (GSSTFR), 514
high-temperature shift (HTS), 471
with interstage product removal (RSIRP), 514
low-temperature shift (LTS), 471
Lurgi, 515–516
MEMS, 344, 350–352
microchannel, 349–350
monolithic, 345
multiple steady-state operation, 337–339
multitubular, 514
preferential oxidation (Prox), 333–352
SASOL
Advanced Synthol (SAS), 506
Arge TFBR, 507
Slurry Bed (SSBR), 508
Slurry-Phase Distillate (SSPD), 508–510
Shell Middle Distillate Synthesis (SMDS), 507
short contact time (SCT), 344–349
slurry, 514–515
trickle-bed, 241, 514
water-oxygen synergy, 339–342
WGS membrane, 406–408, 471
REB Research and Consulting, 373, 381
Rectisol process, 212–214, 285–288
refinery off-gas (ROG), 415, 420–422
reformate, 10, 357
reformer
membrane, 110–112
microreactor, 109–110
plasma, 112
plate, 110
steam methane off-gas (SMROG), 415, 425–426
reforming, 15–16
dry, 16
POX/ATR, 461–464
recent technological developments in, 109–112
steam
alcohol, 65–106
ethanol (SRE), 77–106
catalysts, 84–102
chemistry, 77–80
kinetics, 102–103
reaction pathway, 103–106
thermodynamics, 80–84
hydrocarbons, 36–46
catalysts and kinetics, 38–42
chemistry and thermodynamics, 37–38
mechanism, 42–46
methane (MSR), 14–30, 368
representative reactions, 19
steps in, 17–18
methanol, 65–77
 catalysts, 68–72
 chemistry, 65–66
 kinetics and mechanism, 72–77
 thermodynamics, 66–68
natural gas, 17–36
 catalysts, 20–23
 chemistry, 17–18
 kinetics, 23–26
 mechanism, 26–30
 modeling and simulation, 30–34
 reactor design, 34–36
 thermodynamics, 18–20
steam (SR), 5–6, 15, 128, 391
 advantages, 16–17
 catalytic, 14–17
 of light hydrocarbons, 17–46
 natural gas, 17–36
 oxidative, 5
steam methane (SMR), 415, 462–463
 off-gas (SMROG), 427–430
 substitute (SNG), 159
 -to-liquids (GTL), 12
Research and Engineering Company, 258
research octane number (RON), 510
Research Triangle Institute, 244, 247
Reynold’s analogy, 347
Rheinbraun, 159
Rheinperussen AG, 508
ring opening, 58
ROG. See refinery off-gas
RON. See research octane number
RPSA. See adsorption, pressure swing, rapid
RSIRP. See reactor, with interstage product removalRTI, 214–215
Ruhrchemie AG (RCH), 178
Ruhrkohle AG (RAG), 178, 490
RWGS. See water, -gas shift, reverse
SA, 229
Sarol, 209–210
SAS. See reactor, SASOL Advanced Synthol
SASOL. See South Africa Synthetic Oil Limited
SA/V. See ratio, surface area/volume
S/C. See ratio, steam-to-carbon
SCANfining, 226–227, 230
SCD. See sulphur, chemiluminescence detection
SCGP. See gasification, Shell coal
SCO. See oxidation, selective coal
SCOT process, 471
scrubber technology, 330–331
SCT. See reactor, short contact time
 selective catalytic reduction (SCR), 464
Selectra PROX I, 345, 352
Selenium, 212–213, 283–285, 471, 472, 480
SEM. See microscope, scanning electron
 sequestration
 CO₂, 468, 470–471, 476–477, 480–481
 GHG, 478
SERP. See adsorption, pressure swing
SE-SMR. See sorption-enhanced steam methane reforming process
Shanxi New Style Fuel and Stove Company, 520
Shell, 136, 159, 177, 242, 287
 hydrogen, 137
Shenhua, 487–488, 489, 494
Siemens Westinghouse Power Corporation, 244
sintering, 314
slag, 185–186
 viscosity-temperature relationship, 206
SLM. See hydrogen, purification, membrane, supported liquid
SMART. See sulphur, minimization by ART
SMDS. See reactor, Shell Middle Distillate Synthesis
SMR. See reforming, steam, methane
SMROG. See reforming, steam, methane, off-gas
SNG. See gas, natural, substitute
SOFCs. See fuel, cells, solid oxide
 solvent
 amine-based, 275–282
 -type processes, 211–212, 275
Sorbasis, 432
sorbents
 H₂S, 265–268
 thermodynamics, 268–272
 metal, 258–259
 oxide, 259–260
sorption, reaction, 439
sorption-enhanced steam methane reforming (SE-SMR) process, 32
South Africa, 487. See also South African Coal Oil and Gas Corporation
South Africa Synthetic Oil Limited (SASOL), 158–159, 487, 497, 505
space velocity (SV), 513
spectroscopy
 diffuse reflectance infrared Fourier transform (DRIFT), 74
 mass (MS), 134
 wavelength dispersive X-ray fluorescence, 224
SR. See reforming, steam
SRC. See coal, solvent-refined
SRE. See reforming, steam, ethanol
SRU. See sulphur, recovery unit
SSBR. See reactor, SASOL, Slurry Bed
SSF. See hydrogen, purification, membrane, selective surface flow
SSIE. See ion exchange, solid-state
SSPD. See reactors, SASOL, Slurry-Phase Distillate
ST. See temperature, softening
STARS. See turbine, steam
steam
 reforming. See under reforming turbine. See under turbine
stepwise (SW) mechanism, 24
Süd-Chemie, 21, 318–319, 406
Sulfonol
 -D, 286
 -M, 188, 288–290
 -X, 289–290
sulphur, 15, 220–225
 chemiluminescence detection (SCD), 224
 minimization by ART (SMART), 239
 poisoning, 64, 145
 recovery unit (SRU), 468; see also specific process
 removal, 211–213
 advanced (ASR), 296
tolerance, 378
Sunshine Project, 491
SV. See space velocity
SW. See stepwise (SW) mechanism
Syn Alliance, 242
Syn Shift, 242
Syn Technology, 242
synergy
 carbon dioxide-water, 341
 hydrogen-water, 341
 syngas, 15, 128, 486, 497–500, 513, 517–518
catalytic requirements, 502
 cleanup, 210–215
dependent factors for ratios in, 6
energy systems, requirements for, 8–9
to liquids, 486–520
 production, 1–8
 use, post-purification, 156
SynSat process, 242
synthesis, “polymethylene,” 500
S-Zorb
diesel, 258–259
 process, 247, 253, 258–259
TAML, 296–297
Tampa Electric Company, 470
TEM. See microscope, transmission electron
 temperature
deformation (DT), 206
 fluid (FT), 206
 hemispherical (HT), 206
 program reduction (TPR) studies, 257–258
softening (ST), 206
Texaco, 159
TGP. See gasification, Texaco
thermophorsis, 168
TIT. See turbine, inlet temperature
titania, 378
Tokyo Gas Company, 246, 381
Topsoe Dense Pattern Flexible Distribution Tray, 241
Toyo Engineering Corporation, 420
TPC. See power plants, total plant capital cost
TPO. See oxidation,
temperature-programmed
TReND process, 247, 253
tri-forming, 11
turbine
gas (GT), 454
 H-, 455
 high-pressure (HPT), 458
 steam (HPST), 472
Index

high-temperature (HTT), 458
inlet temperature (TIT), 460
intermediate-pressure steam (IPST), 472
low-pressure (LPT), 458
steam (LPST), 454, 472

U.S. Department of Energy, 352
Ube Industries, Ltd., 367
UCARSOL, 281
U-Gas, 160, 201
Uhde. See Ein Unternhmn von
ThyssenKrupp Technologies
Union Carbide Corporation, 281, 418–419
UniPure Corporation, 296
United Catalyst/Süd-Chemie, 236
UOP LLC, 228–229, 281, 367, 419, 471
UTC Fuel Cell, 136–137, 255

Valero Energy Company, 296
VEBA OEL AG, 490
Volocys, 36
VPIE. See ion exchange, vapor-phase

W. C. Heraeus GmbH & Co. KG, 381
WATB. See bed, weighted average
temperature
water-gas reaction, 174–176

water-gas shift (WGS), 5, 6, 17–18, 157,
165, 311–326, 385, 388, 415,
480–481, 499–501
catalyst improvements, 318
catalyst shift, 311
catalysts, 313–315, 318–326
CoMo catalysts, 314–315, 317–318
Cu catalysts, 318–319
CuZn catalysts, 314, 317
ferrochrome catalysts, 313–316,
318–319
high temperature, 265
industrial processes, 313–315
kinetics, 315–318
in NGCC plants, 455–465
nonprecious metal catalysts, 321–323
precious metal catalysts, 323–326
reaction mechanisms, 315–318
reaction technologies, 319–321
reverse (RWGS), 18
thermodynamics, 312–313
WGS. See water, -gas shift
Winkler fluidized-bed process, 158–159,
199–201
World Gasification Survey (2004), 466

Xinwen Mining Group, 492