CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxi</td>
</tr>
<tr>
<td>Preface</td>
<td>xxv</td>
</tr>
</tbody>
</table>

PART I OVERVIEW AND BASICS

1 Overview
1.1 Meeting People's Quality Expectations
1.2 Book Organization and Chapter Overview
1.3 Dependency and Suggested Usage
1.4 Reader Preparation and Background Knowledge
 Problems

2 What Is Software Quality?
2.1 Quality: Perspectives and Expectations
2.2 Quality Frameworks and ISO-9126
2.3 Correctness and Defects: Definitions, Properties, and Measurements
2.4 A Historical Perspective of Quality
2.5 So, What Is Software Quality?
 Problems

vi
3 Quality Assurance 27
3.1 Classification: QA as Dealing with Defects 27
3.2 Defect Prevention 31
 3.2.1 Education and training 31
 3.2.2 Formal method 32
 3.2.3 Other defect prevention techniques 33
3.3 Defect Reduction 34
 3.3.1 Inspection: Direct fault detection and removal 34
 3.3.2 Testing: Failure observation and fault removal 35
 3.3.3 Other techniques and risk identification 36
3.4 Defect Containment 37
 3.4.1 Software fault tolerance 37
 3.4.2 Safety assurance and failure containment 38
3.5 Concluding Remarks 38
Problems 39

4 Quality Assurance in Context 41
4.1 Handling Discovered Defect During QA Activities 41
4.2 QA Activities in Software Processes 43
4.3 Verification and Validation Perspectives 46
4.4 Reconciling the Two Views 49
4.5 Concluding Remarks 51
Problems 52

5 Quality Engineering 53
5.1 Quality Engineering: Activities and Process 53
5.2 Quality Planning: Goal Setting and Strategy Formation 56
5.3 Quality Assessment and Improvement 59
5.4 Quality Engineering in Software Processes 59
5.5 Concluding Remarks 63
Problems 64

PART II SOFTWARE TESTING

6.1 Purposes, Activities, Processes, and Context 67
6.2 Questions About Testing 71
6.3 Functional vs. Structural Testing: What to Test? 74
6.4 Coverage-Based vs. Usage-Based Testing: When to Stop Testing? 78
6.5 Concluding Remarks 83
Problems 84
Test Activities, Management, and Automation

- **7.1 Test Planning and Preparation**
 - 7.1.1 Test planning: Goals, strategies, and techniques
 - 7.1.2 Testing models and test cases
 - 7.1.3 Test suite preparation and management
 - 7.1.4 Preparation of test procedure

- **7.2 Test Execution, Result Checking, and Measurement**

- **7.3 Analysis and Follow-up**

- **7.4 Activities, People, and Management**

- **7.5 Test Automation**

- **7.6 Concluding Remarks**

Coverage and Usage Testing Based on Checklists and Partitions

- **8.1 Checklist-Based Testing and Its Limitations**

- **8.2 Testing for Partition Coverage**
 - 8.2.1 Some motivational examples
 - 8.2.2 Partition: Concepts and definitions
 - 8.2.3 Testing decisions and predicates for partition coverage

- **8.3 Usage-Based Statistical Testing with Musa’s Operational Profiles**
 - 8.3.1 The cases for usage-based statistical testing
 - 8.3.2 Musa OP: Basic ideas
 - 8.3.3 Using OPs for statistical testing and other purposes

- **8.4 Constructing Operational Profiles**
 - 8.4.1 Generic methods and participants
 - 8.4.2 OP development procedure: Musa-1
 - 8.4.3 OP development procedure: Musa-2

- **8.5 Case Study: OP for the Cartridge Support Software**
 - 8.5.1 Background and participants
 - 8.5.2 OP development in five steps
 - 8.5.3 Metrics collection, result validation, and lessons learned

- **8.6 Concluding Remarks**

Input Domain Partitioning and Boundary Testing

- **9.1 Input Domain Partitioning and Testing**
 - 9.1.1 Basic concepts, definitions, and terminology
 - 9.1.2 Input domain testing for partition and boundary problems

- **9.2 Simple Domain Analysis and the Extreme Point Combination Strategy**

- **9.3 Testing Strategies Based on Boundary Analysis**
 - 9.3.1 Weak $N \times 1$ strategy
CONTENTS

9.3.2 Weak 1 × 1 strategy 139

9.4 Other Boundary Test Strategies and Applications 140
 9.4.1 Strong and approximate strategies 140
 9.4.2 Other types of boundaries and extensions 141
 9.4.3 Queuing testing as boundary testing 142

9.5 Concluding Remarks 144
Problems 145

10 Coverage and Usage Testing Based on Finite-State Machines and Markov Chains 147

10.1 Finite-State Machines and Testing 148
 10.1.1 Overcoming limitations of simple processing models 148
 10.1.2 FSMs: Basic concepts and examples 149
 10.1.3 Representations of FSMs 151

10.2 FSM Testing: State and Transition Coverage 153
 10.2.1 Some typical problems with systems modeled by FSMs 153
 10.2.2 Model construction and validation 154
 10.2.3 Testing for correct states and transitions 155
 10.2.4 Applications and limitations 156

10.3 Case Study: FSM-Based Testing of Web-Based Applications 157
 10.3.1 Characteristics of web-based applications 157
 10.3.2 What to test: Characteristics of web problems 158
 10.3.3 FSMs for web testing 159

10.4 Markov Chains and Unified Markov Models for Testing 160
 10.4.1 Markov chains and operational profiles 161
 10.4.2 From individual Markov chains to unified Markov models 162
 10.4.3 UMM construction 164

10.5 Using UMMs for Usage-Based Statistical Testing 164
 10.5.1 Testing based on usage frequencies in UMMs 164
 10.5.2 Testing based on other criteria and UMM hierarchies 165
 10.5.3 Implementation, application, and other issues 166

10.6 Case Study Continued: Testing Based on Web Usages 167
 10.6.1 Usage-based web testing: Motivations and basic approach 167
 10.6.2 Constructing UMMs for statistical web testing 168
 10.6.3 Statistical web testing: Details and examples 169

10.7 Concluding Remarks 171
Problems 172

11 Control Flow, Data Dependency, and Interaction Testing 175

11.1 Basic Control Flow Testing 176
 11.1.1 General concepts 176
11.1.2 Model construction 178
11.1.3 Path selection 180
11.1.4 Path sensitization and other activities 181

11.2 Loop Testing, CFT Usage, and Other Issues 182
11.2.1 Different types of loops and corresponding CFGs 182
11.2.2 Loop testing: Difficulties and a heuristic strategy 184
11.2.3 CFT Usage and Other Issues 186

11.3 Data Dependency and Data Flow Testing 186
11.3.1 Basic concepts: Operations on data and data dependencies 187
11.3.2 Basics of DFT and DDG 188
11.3.3 DDG elements and characteristics 189
11.3.4 Information sources and generic procedure for DDG construction 191
11.3.5 Building DDG indirectly 192
11.3.6 Dealing with loops 194

11.4 DFT: Coverage and Applications 195
11.4.1 Achieving slice and other coverage 195
11.4.2 DFT: Applications and other issues 198
11.4.3 DFT application in synchronization testing 199

11.5 Concluding Remarks 200
Problems 200

12 Testing Techniques: Adaptation, Specialization, and Integration 203
12.1 Testing Sub-Phases and Applicable Testing Techniques 203
12.2 Specialized Test Tasks and Techniques 210
12.3 Test Integration 214
12.4 Case Study: Hierarchical Web Testing 214
12.5 Concluding Remarks 217
Problems 219

PART III QUALITY ASSURANCE BEYOND TESTING

13 Defect Prevention and Process Improvement 223
13.1 Basic Concepts and Generic Approaches 223
13.2 Root Cause Analysis for Defect Prevention 224
13.3 Education and Training for Defect Prevention 225
13.4 Other Techniques for Defect Prevention 228
13.4.1 Analysis and modeling for defect prevention 228
13.4.2 Technologies, standards, and methodologies for defect prevention 229
13.4.3 Software tools to block defect injection 230
13.5 Focusing on Software Processes 231
13.5.1 Process selection, definition, and conformance 231
13.5.2 Process maturity 232
13.5.3 Process and quality improvement 233
13.6 Concluding Remarks 234
Problems 235

14 Software Inspection 237
14.1 Basic Concepts and Generic Process 237
14.2 Fagan inspection 239
14.3 Other Inspections and Related Activities 242
 14.3.1 Inspections of reduced scope or team size 242
 14.3.2 Inspections of enlarged scope or team size 243
 14.3.3 Informal desk checks, reviews, and walkthroughs 244
 14.3.4 Code reading 244
 14.3.5 Other formal reviews and static analyses 246
14.4 Defect Detection Techniques, Tool/Process Support, and Effectiveness 247
14.5 Concluding Remarks 249
Problems 250

15 Formal Verification 251
15.1 Basic Concepts: Formal Verification and Formal Specification 251
15.2 Formal Verification: Axiomatic Approach 254
 15.2.1 Formal logic specifications 254
 15.2.2 Axioms 255
 15.2.3 Axiomatic proofs and a comprehensive example 257
15.3 Other Approaches 259
 15.3.1 Weakest pre-conditions and backward chaining 260
 15.3.2 Functional approach and symbolic execution 260
 15.3.3 Seeking alternatives: Model checking and other approaches 261
15.4 Applications, Effectiveness, and Integration Issues 263
15.5 Concluding Remarks 265
Problems 266

16 Fault Tolerance and Failure Containment 267
16.1 Basic Ideas and Concepts 267
16.2 Fault Tolerance with Recovery Blocks 270
16.3 Fault Tolerance with N-Version Programming 272
 16.3.1 NVP: Basic technique and implementation 272
 16.3.2 Ensuring version independence 273
 16.3.3 Applying NVP ideas in other QA activities 274
16.4 Failure Containment: Safety Assurance and Damage Control 275
 16.4.1 Hazard analysis using fault-trees and event-trees 275
 16.4.2 Hazard resolution for accident prevention 278
16.4.3 Accident analysis and post-accident damage control
16.5 Application in Heterogeneous Systems
 16.5.1 Modeling and analyzing heterogeneous systems
 16.5.2 Prescriptive specifications for safety
16.6 Concluding Remarks
Problems

17 Comparing Quality Assurance Techniques and Activities
 17.1 General Questions: Cost, Benefit, and Environment
 17.2 Applicability to Different Environments
 17.3 Effectiveness Comparison
 17.3.1 Defect perspective
 17.3.2 Problem types
 17.3.3 Defect level and pervasiveness
 17.3.4 Result interpretation and constructive information
 17.4 Cost Comparison
 17.5 Comparison Summary and Recommendations
Problems

PART IV QUANTIFIABLE QUALITY IMPROVEMENT

18 Feedback Loop and Activities for Quantifiable Quality Improvement
 18.1 QA Monitoring and Measurement
 18.1.1 Direct vs. indirect quality measurements
 18.1.2 Direct quality measurements: Result and defect measurements
 18.1.3 Indirect quality measurements: Environmental, product internal, and activity measurements
 18.2 Immediate Follow-up Actions and Feedback
 18.3 Analyses and Follow-up Actions
 18.3.1 Analyses for product release decisions
 18.3.2 Analyses for other project management decisions
 18.3.3 Other feedback and follow-up actions
 18.4 Implementation, Integration, and Tool Support
 18.4.1 Feedback loop: Implementation and integration
 18.4.2 A refined quality engineering process
 18.4.3 Tool support: Strategy, implementation, and integration
 18.5 Concluding Remarks
Problems

19 Quality Models and Measurements
 19.1 Models for Quality Assessment
19.2 Generalized Models 324
19.3 Product-Specific Models 327
19.4 Model Comparison and Interconnections 328
19.5 Data Requirements and Measurement 330
19.6 Selecting Measurements and Models 333
19.7 Concluding Remarks 335
Problems 337

20 Defect Classification and Analysis 339
20.1 General Types of Defect Analyses 339
20.1.1 Defect distribution analysis 340
20.1.2 Defect trend analysis and defect dynamics model 343
20.1.3 Defect causal analysis 344
20.2 Defect Classification and ODC 345
20.2.1 ODC concepts 345
20.2.2 Defect classification using ODC: A comprehensive example 346
20.2.3 Adapting ODC to analyze web errors 347
20.3 Defect Analysis for Classified Data 348
20.3.1 One-way analysis: Analyzing a single defect attribute 348
20.3.2 Two-way and multi-way analysis: Examining cross-interactions 349
20.4 Concluding Remarks 350
Problems 351

21 Risk Identification for Quantifiable Quality Improvement 353
21.1 Basic Ideas and Concepts 353
21.2 Traditional Statistical Analysis Techniques 355
21.3 New Techniques for Risk Identification 356
21.3.1 Principal component and discriminant analyses 356
21.3.2 Artificial neural networks and learning algorithms 358
21.3.3 Data partitions and tree-based modeling 359
21.3.4 Pattern matching and optimal set reduction 362
21.4 Comparisons and Integration 362
21.5 Risk Identification for Classified Defect Data 365
21.6 Concluding Remarks 368
Problems 369

22 Software Reliability Engineering 371
22.1 SRE: Basic Concepts and General Approaches 371
22.2 Large Software Systems and Reliability Analyses 372
22.3 Reliability Snapshots Using IDRMs 374
22.4 Longer-Term Reliability Analyses Using SRGMs 377
22.5 TBRMs for Reliability Analysis and Improvement
 22.5.1 Constructing and using TBRMs 381
 22.5.2 TBRM Applications 382
 22.5.3 TBRM's impacts on reliability improvement 384
22.6 Implementation and Software Tool Support 385
22.7 SRE: Summary and Perspectives 386
 Problems 387

Bibliography 389

Index 403
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope and content hierarchy: Testing, quality assurance (QA), and software</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>quality engineering</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Chapter and PART dependency diagram</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Defect related concepts and relations</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Generic ways to deal with defects</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>QA activities in the waterfall process</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Verification and validation activities associated with the V-Model</td>
<td>49</td>
</tr>
<tr>
<td>5.1</td>
<td>Quality engineering process</td>
<td>54</td>
</tr>
<tr>
<td>5.2</td>
<td>Quality engineering in the waterfall process</td>
<td>61</td>
</tr>
<tr>
<td>5.3</td>
<td>Quality engineering effort profile: The share of different activities as part</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>of the total effort</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Generic testing process</td>
<td>69</td>
</tr>
<tr>
<td>7.1</td>
<td>Test coverage analysis with S-TCAT</td>
<td>100</td>
</tr>
<tr>
<td>8.1</td>
<td>An operational profile (OP) of requested file types for the SMU/SEAS website</td>
<td>113</td>
</tr>
<tr>
<td>8.2</td>
<td>A tree-structured or graphical operational profile</td>
<td>121</td>
</tr>
<tr>
<td>9.1</td>
<td>1-dimensional domain testing with EPC strategy</td>
<td>133</td>
</tr>
</tbody>
</table>
9.2 2-dimensional domain testing with EPC strategy 134
9.3 1-dimensional domain testing with weak \(N \times 1 \) strategy 137
9.4 2-dimensional domain testing with weak \(N \times 1 \) strategy for the boundary between C0 and C2 138
9.5 2-dimensional boundary tilt detection by the weak \(N \times 1 \) strategy 138
9.6 2-dimensional domain testing with weak \(1 \times 1 \) strategy for the boundary between C0 and C6 139
9.7 2-dimensional boundary tilt detection by the weak \(1 \times 1 \) strategy 140
10.1 An example finite-state machine (FSM) for call processing 151
10.2 Multi-layered web applications 158
10.3 Example Markov chain for call processing FSM in Figure 10.1 162
10.4 Example UMM (unified Markov model): Expanding state E of the top-level UMM in Figure 10.3 into a lower-level UMM 163
10.5 Sample entries in an access log 168
10.6 Top-level UMM for SMU/SEAS 170
11.1 A sample control flow graph (CFG) 177
11.2 A sample program and its control flow graph (CFG) 179
11.3 Control flow graphs (CFGs) for “for” and “while” loops 183
11.4 Data dependency graph (DDG) element: An example of data definition through assignment 188
11.5 DDG element: An example of data selector node 190
11.6 A sample data flow graph (DDG) 192
11.7 Data selectors for multiple variables in branches 194
11.8 Three data slices for the DDG in Figure 11.6 and their sensitization 195
11.9 Combination of independent data selectors and related slices 196
11.10 Combination of nested data selectors and related slices 197
12.1 Testing sub-phases associated with the V-Model 204
12.2 Hierarchical implementation of an integrated web testing strategy 218
14.1 Generic inspection process 238
14.2 A program segment (left) and its permutation (right) 245
15.1 A program segment with its formal specification 258
16.1 Fault tolerance with recovery blocks 270
16.2 Fault tolerance with NVP 272
16.3 Fault-tree analysis (FTA) for an automobile accident 276
16.4 Event-tree analysis (ETA) for an automobile accident 277
16.5 Two-frame model for a CCSCS 280
16.6 Prescription monitor for safety assurance 281
18.1 Refined quality engineering process: Measurement, analysis, and feedback for quantifiable quality improvement 304
18.2 Further refined quality engineering process with detailed measurement sources and feedback paths 315
18.3 Tools for quality measurement, analysis, and feedback 319
19.1 Classification of quality assessment models 324
19.2 Effort or defect profile in the Putnam Model 326
19.3 Relating measurements to quality assessment models 332
19.4 A fitted SRGM for an IBM product 335
19.5 A tree-based reliability model (TBRM) for an IBM product 336
20.1 One-way analysis of defect impact for an IBM product 349
20.2 Error (type E) and hit profiles for SMU/SEAS 350
21.1 Processing model of a neuron 358
21.2 Backward propagation algorithm for artificial neural networks 359
21.3 Algorithm for tree-based model construction 360
21.4 Tree-based defect model for a commercial product 361
21.5 Algorithm for optimal set reduction 362
21.6 Example hierarchy for optimal set reduction 363
21.7 Predictions of defect impact for an IBM product 366
21.8 Defect impact distributions for an IBM product 367
22.1 Measured runs (per day) for products D 374
22.2 Measured transactions (per run) for products E 375
22.3 SRGMs for test run indexed failures for product D 380
22.4 TBRM1 for product D 383
22.5 TBRM2 for product D 383
22.6 Comparing failure arrivals for products A, B, C, and D 384
LIST OF TABLES

2.1 Correctness-centered properties according to quality views and attributes 23
4.1 QA activities: Mapping from defect-centered (DC) view to verification and validation (V&V) view 51
7.1 A template for test execution measurements 93
8.1 A high-level functional checklist for some relational database products 105
8.2 A template for a two-dimensional checklist by combining a standards checklist and a component checklist 106
8.3 Sample test cases for the program solving the equation $ax^2 + bx + c = 0$ 108
8.4 Usage frequencies (hits) and probabilities (% of total) for different file types for SMU/SEAS 112
8.5 A sample customer profile 118
8.6 A sample user profile 119
8.7 CSS user profile 123
8.8 CSS OP: CSS functions classified according to usage probabilities 124
10.1 An example finite-state machine (FSM) for call processing in tabular representation 152
10.2 Top entry pages to SMU/SEAS 170

xxi
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Comparison of key characteristics and applicable testing techniques for different testing sub-phases</td>
<td>209</td>
</tr>
<tr>
<td>13.1</td>
<td>Distribution of modules of different maturity for an IBM product</td>
<td>227</td>
</tr>
<tr>
<td>13.2</td>
<td>Process maturity levels in CMM</td>
<td>233</td>
</tr>
<tr>
<td>15.1</td>
<td>Example symbolic execution traces</td>
<td>261</td>
</tr>
<tr>
<td>17.1</td>
<td>Objects of QA alternatives</td>
<td>289</td>
</tr>
<tr>
<td>17.2</td>
<td>Development activities where different QA alternatives are applicable</td>
<td>290</td>
</tr>
<tr>
<td>17.3</td>
<td>Required expertise and background knowledge for people to perform different QA alternatives</td>
<td>291</td>
</tr>
<tr>
<td>17.4</td>
<td>Defect observed and dealt with by different QA alternatives</td>
<td>292</td>
</tr>
<tr>
<td>17.5</td>
<td>Main problem types dealt with by different QA alternatives</td>
<td>292</td>
</tr>
<tr>
<td>17.6</td>
<td>Defect levels where different QA alternatives are suitable</td>
<td>294</td>
</tr>
<tr>
<td>17.7</td>
<td>Ease of result interpretation for different QA alternatives and amount of constructive information/measurements</td>
<td>295</td>
</tr>
<tr>
<td>17.8</td>
<td>Cost comparison for different QA alternatives</td>
<td>297</td>
</tr>
<tr>
<td>17.9</td>
<td>General comparison for different QA alternatives</td>
<td>298</td>
</tr>
<tr>
<td>19.1</td>
<td>A segmented model for reliability level estimation</td>
<td>326</td>
</tr>
<tr>
<td>19.2</td>
<td>DRM (defect removal model): defect distribution for previous releases of a product</td>
<td>327</td>
</tr>
<tr>
<td>19.3</td>
<td>High-defect modules for two products identified by tree-based modeling</td>
<td>329</td>
</tr>
<tr>
<td>19.4</td>
<td>Summary of quality assessment models and their applications</td>
<td>329</td>
</tr>
<tr>
<td>19.5</td>
<td>Summary of measurements required by different quality models</td>
<td>331</td>
</tr>
<tr>
<td>19.6</td>
<td>Data attributes used in Figure 19.5</td>
<td>336</td>
</tr>
<tr>
<td>20.1</td>
<td>Common error types and error distribution for SMU/SEAS</td>
<td>341</td>
</tr>
<tr>
<td>20.2</td>
<td>Characterizing web errors by file types</td>
<td>342</td>
</tr>
<tr>
<td>20.3</td>
<td>Distribution of DF for a commercial product LS</td>
<td>342</td>
</tr>
<tr>
<td>20.4</td>
<td>Distribution of DF for a commercial product NS</td>
<td>343</td>
</tr>
<tr>
<td>20.5</td>
<td>A sample defect dynamics model</td>
<td>344</td>
</tr>
<tr>
<td>20.6</td>
<td>Some defect attributes and values for an IBM product</td>
<td>347</td>
</tr>
<tr>
<td>20.7</td>
<td>Two-way analysis results: Interaction between impact and severity</td>
<td>351</td>
</tr>
<tr>
<td>21.1</td>
<td>Principal components for a commercial product</td>
<td>357</td>
</tr>
<tr>
<td>21.2</td>
<td>Predicting defects using artificial neural networks</td>
<td>359</td>
</tr>
<tr>
<td>Table Number</td>
<td>Table Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>21.3</td>
<td>Characterizing high-defect modules for a commercial product</td>
<td>361</td>
</tr>
<tr>
<td>21.4</td>
<td>Comparison of risk identification techniques</td>
<td>364</td>
</tr>
<tr>
<td>22.1</td>
<td>Estimated reliability (\hat{R}) and failure rate ($\hat{\lambda}$) for successive time segments</td>
<td>376</td>
</tr>
<tr>
<td>22.2</td>
<td>Daily error rate (or failure rate) for SMU/SEAS</td>
<td>377</td>
</tr>
<tr>
<td>22.3</td>
<td>Comparing purification levels for products A, B, C, and D</td>
<td>384</td>
</tr>
</tbody>
</table>