Contents

Preface
xiii
Acknowledgements
 xv

1 **Introduction**
1.1 A Sustainable Energy Supply
1.2 The Greenhouse Effect and Climate Change
1.3 Light Absorption in Nature as a Source of Energy
1.4 The Contribution of Science: Understanding, Modelling and Monitoring
Exercises
References

2 **Light and Matter**
2.1 The Solar Spectrum
2.1.1 Radiation from a Black Body
2.1.2 Emission Spectrum of the Sun
2.2 Interaction of Light with Matter
2.2.1 Electric Dipole Moments of Transitions
2.2.2 Einstein Coefficients
2.2.3 Absorption of a Beam of Light: Lambert-Beer’s Law
2.3 Ultraviolet Light and Biomolecules
2.3.1 Spectroscopy of Biomolecules
2.3.2 Damage to Life from Solar UV
2.3.3 The Ozone Filter as Protection
Exercises
References

3 **Climate and Climate Change**
3.1 The Vertical Structure of the Atmosphere
3.2 The Radiation Balance and the Greenhouse Effect
3.2.1 Simple Changes in the Radiation Balance
3.2.2 Radiation Transfer
3.2.3 A Simple Analytical Model
3.2.4 Radiative Forcing and Global Warming
3.2.5 The Greenhouse Gases
Contents

3.3 Dynamics in the Climate System 51
 3.3.1 Horizontal Motion of Air 53
 3.3.2 Vertical Motion of Ocean Waters 58
 3.3.3 Horizontal Motion of Ocean Waters 59
3.4 Natural Climate Variability 59
3.5 Modelling Human-Induced Climate Change 62
 3.5.1 The Carbon Cycle 63
 3.5.2 Structure of Climate Modelling 66
 3.5.3 Modelling the Atmosphere 67
 3.5.4 A Hierarchy of Models 70
3.6 Analyses of IPCC, the Intergovernmental Panel on Climate Change 70
3.7 Forecasts of Climate Change 70
Exercises 74
References 76

4 Heat Engines 77
4.1 Heat Transfer and Storage 78
 4.1.1 Conduction 79
 4.1.2 Convection 82
 4.1.3 Radiation 82
 4.1.4 Phase Change 83
 4.1.5 The Solar Collector 84
 4.1.6 The Heat Diffusion Equation 87
 4.1.7 Heat Storage 90
4.2 Principles of Thermodynamics 91
 4.2.1 First and Second Laws 91
 4.2.2 Heat and Work; Carnot Efficiency 95
 4.2.3 Efficiency of a ‘Real’ Heat Engine 97
 4.2.4 Second Law Efficiency 98
 4.2.5 Loss of Exergy in Combustion 101
4.3 Idealized Cycles 103
 4.3.1 Carnot Cycle 103
 4.3.2 Stirling Engine 104
 4.3.3 Steam Engine 105
 4.3.4 Internal Combustion 107
 4.3.5 Refrigeration 110
4.4 Electricity as Energy Carrier 113
 4.4.1 Varying Grid Load 114
 4.4.2 Co-Generation of Heat and Electricity 115
 4.4.3 Storage of Electric Energy 117
 4.4.4 Transmission of Electric Power 123
4.5 Pollution from Heat Engines 125
 4.5.1 Nitrogen Oxides NOx 125
 4.5.2 SO2 126
 4.5.3 CO and CO2 126
Contents

4.5.4 Aerosols 127
4.5.5 Volatile Organic Compounds VOC 128
4.5.6 Thermal Pollution 129
4.5.7 Regulations 129

4.6 The Private Car 129
4.6.1 Power Needs 130
4.6.2 Automobile Fuels 131
4.6.3 Three-Way Catalytic Converter 132
4.6.4 Electric Car 133
4.6.5 Hybrid Car 134

4.7 Economics of Energy Conversion 134
4.7.1 Capital Costs 134
4.7.2 Learning Curve 138
Exercises 138
References 142

5 Renewable Energy 145
5.1 Electricity from the Sun 146
5.1.1 Varying Solar Input 146
5.1.2 Electricity from Solar Heat: Concentrating Solar Power CSP 150
5.1.3 Direct Conversion of Light into Electricity: Photovoltaics PV 152

5.2 Energy from the Wind 159
5.2.1 Betz Limit 160
5.2.2 Aerodynamics 162
5.2.3 Wind Farms 165
5.2.4 Vertical Wind Profile 165
5.2.5 Wind Statistics 167
5.2.6 State of the Art and Outlook 168

5.3 Energy from the Water 169
5.3.1 Power from Dams 169
5.3.2 Power from Flowing Rivers 170
5.3.3 Power from Waves 170
5.3.4 Power from the Tides 174

5.4 Bio Energy 175
5.4.1 Thermodynamics of Bio Energy 175
5.4.2 Stability 180
5.4.3 Solar Efficiency 180
5.4.4 Energy from Biomass 182

5.5 Physics of Photosynthesis 183
5.5.1 Basics of Photosynthesis 184
5.5.2 Light-Harvesting Antennas 185
5.5.3 Energy Transfer Mechanism 187
5.5.4 Charge Separation 190
5.5.5 Flexibility and Disorder 193
5.5.6 Photoprotection 193
5.5.7 Research Directions 195
Contents

5.6 Organic Photocells: the Grätzel Cell 196
5.6.1 The Principle 196
5.6.2 Efficiency 199
5.6.3 New Developments and the Future 202
5.6.4 Applications 203
5.7 Bio Solar Energy 203
5.7.1 Comparison of Biology and Technology 204
5.7.2 Legacy Biochemistry 207
5.7.3 Artificial Photosynthesis 209
5.7.4 Solar Fuels with Photosynthetic Microorganisms: Two Research Questions 213
5.7.5 Conclusion 213
Exercises 215
References 217

6 Nuclear Power 221
6.1 Nuclear Fission 222
6.1.1 Principles 222
6.1.2 Four Factor Formula 226
6.1.3 Reactor Equations 229
6.1.4 Stationary Reactor 231
6.1.5 Time Dependence of a Reactor 233
6.1.6 Reactor Safety 234
6.1.7 Nuclear Explosives 237
6.2 Nuclear Fusion 238
6.3 Radiation and Health 244
6.3.1 Definitions 244
6.3.2 Norms on Exposure to Radiation 245
6.3.3 Normal Use of Nuclear Power 247
6.3.4 Radiation from Nuclear Accidents 247
6.3.5 Health Aspects of Fusion 247
6.4 Managing the Fuel Cycle 248
6.4.1 Uranium Mines 249
6.4.2 Enrichment 249
6.4.3 Fuel Burnup 252
6.4.4 Reprocessing 252
6.4.5 Waste Management 253
6.4.6 Nonproliferation 256
6.5 Fourth Generation Nuclear Reactors 257
Exercises 258
References 259

7 Dispersion of Pollutants 261
7.1 Diffusion 262
7.1.1 Diffusion Equation 262
7.1.2 Point Source in Three Dimensions in Uniform Wind 267
7.1.3 Effect of Boundaries 269
Contents

7.2 Dispersion in Rivers
7.2.1 One-Dimensional Approximation
7.2.2 Influence of Turbulence
7.2.3 Example: A Calamity Model for the Rhine River
7.2.4 Continuous Point Emission
7.2.5 Two Numerical Examples
7.2.6 Improvements
7.2.7 Conclusion

7.3 Dispersion in Groundwater
7.3.1 Basic Definitions
7.3.2 Darcy’s Equations
7.3.3 Stationary Applications
7.3.4 Dupuit Approximation
7.3.5 Simple Flow in a Confined Aquifer
7.3.6 Time Dependence in a Confined Aquifer
7.3.7 Adsorption and Desorption of Pollutants

7.4 Mathematics of Fluid Dynamics
7.4.1 Stress Tensor
7.4.2 Equations of Motion
7.4.3 Newtonian Fluids
7.4.4 Navier-Stokes Equation
7.4.5 Reynolds Number
7.4.6 Turbulence

7.5 Gaussian Plumes in the Air
7.5.1 Statistical Analysis
7.5.2 Continuous Point Source
7.5.3 Gaussian Plume from a High Chimney
7.5.4 Empirical Determination of the Dispersion Coefficients
7.5.5 Semi-Empirical Determination of the Dispersion Parameters
7.5.6 Building a Chimney

7.6 Turbulent Jets and Plumes
7.6.1 Dimensional Analysis
7.6.2 Simple Jet
7.6.3 Simple Plume

Exercises

References

8 Monitoring with Light
8.1 Overview of Spectroscopy
8.1.1 Population of Energy Levels and Intensity
8.1.2 Transition Dipole Moment: Selection Rules
8.1.3 Linewidths

8.2 Atomic Spectra
8.2.1 One-Electron Atoms
8.2.2 Many-Electron Atoms

x Contents

8.3 Molecular Spectra 347
 8.3.1 Rotational Transitions 347
 8.3.2 Vibrational Transitions 349
 8.3.3 Electronic Transitions 353
8.4 Scattering 359
 8.4.1 Raman Scattering 359
 8.4.2 Resonance Raman Scattering 360
 8.4.3 Rayleigh Scattering 361
 8.4.4 Mie Scattering 362
 8.4.5 Scattering in the Atmosphere 362
8.5 Remote Sensing by Satellites 362
 8.5.1 ENVISAT Satellite 362
 8.5.2 SCIAMACHY’s Operation 362
 8.5.3 Analysis 364
 8.5.4 Ozone Results 368
8.6 Remote Sensing by Lidar 368
 8.6.1 Lidar Equation and DIAL 369
 8.6.2 Range-Resolved Cloud and Aerosol Optical Properties 371
Exercises 376
References 377

9 The Context of Society 379
9.1 Using Energy Resources 380
 9.1.1 Energy Consumption 380
 9.1.2 Energy Consumption and Resources 382
 9.1.3 Energy Efficiency 383
 9.1.4 Comparing Energy Resources 384
 9.1.5 Energy Options 387
 9.1.6 Conclusion 388
9.2 Fresh Water 389
9.3 Risks 389
 9.3.1 Small Concentrations of Harmful Chemicals 390
 9.3.2 Acceptable Risks 392
 9.3.3 Small Probability for a Large Harm 393
 9.3.4 Dealing with Uncertainties 394
9.4 International Efforts 396
 9.4.1 Protection of the Ozone Layer 396
 9.4.2 Protection of Climate 396
9.5 Global Environmental Management 398
 9.5.1 Self-Organized Criticality 398
 9.5.2 Conclusion 401
9.6 Science and Society 401
 9.6.1 Nature of Science 401
 9.6.2 Control of Science 402
 9.6.3 Aims of Science 402
 9.6.4 A New Social Contract between Science and Society 404
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises and social questions</td>
<td>405</td>
</tr>
<tr>
<td>Social questions</td>
<td>405</td>
</tr>
<tr>
<td>References</td>
<td>406</td>
</tr>
<tr>
<td>Appendix A: Physical and Numerical Constants</td>
<td>409</td>
</tr>
<tr>
<td>Appendix B: Vector Algebra</td>
<td>411</td>
</tr>
<tr>
<td>Appendix C: Gauss, Delta and Error Functions</td>
<td>419</td>
</tr>
<tr>
<td>Appendix D: Experiments in a Student’s Lab</td>
<td>423</td>
</tr>
<tr>
<td>Appendix E: Web Sites</td>
<td>425</td>
</tr>
<tr>
<td>Appendix F: Omitted Parts of the Second Edition</td>
<td>427</td>
</tr>
<tr>
<td>Index</td>
<td>429</td>
</tr>
</tbody>
</table>