Index

Note: Page numbers with italicized f’s and t’s refer to figures and tables

5,6-dihydroxyindole-2-carboxylic acid (DHICA), 25–7
5,6-dihydroxyindole (DHI), 25

absorption, 302
absorption lines, 341
absorption refrigeration, 113
acceptable risks, 392–3
acceptor impurity, 154
acid rain, 126
AC lines, 124
actinides, 235
adenine, 20
adiabat
dry, 35–6
saturated, 36
adsorption, 302
advection, 263
aerodynamics, 162–5
aerosols, 127–8
air
horizontal motion of, 53–8
mass of, 34
physical and numerical constants, 409 t
specific gas constant for, 34
air density, 130–4
air drag, 130–4
albedo, 3, 37, 40 t
alpha-crystallin, 21
alternating tensor, 306
angle of attack, 162
anti-Stokes Raman scattering, 340, 359–60
aquifers, 283–5
river in connection with, 301 f
storage coefficient, 302
storativity, 302
between two canals, 297–8

unconfined, 295
vertical flow, 290
artificial photosynthesis, 209–13, 441 f
atmosphere
absorption of radiation in, 41 f
clouds, 36
coupling of horizontal and vertical properties in,
57–8
dry adiabat, 35–6
modeling, 67–9
ocean-atmosphere interaction, 64–5
saturated adiabat, 36
scattering in, 362
upward radiation flux, 42–3
vertical dispersion of pollutants in, 317 t
vertical structure of, 33–6
atmosphere-land interaction, 65–6
Atmospheric-Ocean Coupled General Circulation Models (AOGCMs), 67
atomic spectra, 345–7
autocorrelation function, 320
automobiles, 129–34
electric, 133
fuels, 131–2
hybrid, 134
power needs, 130–1
three-way catalytic converter, 132–3
autumnal equinox, 61 f
Avogadro’s number, 18, 120
backscatter lidar, 370–3
bacteriochlorophylls, 4, 186, 190, 437 f
balancing costs, 169
batteries, 119–20
becquerel, 244
benzothiazine, 25, 26 f
benzothiazole, 25, 26 f

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
430 Index

biochemical feedbacks, 430f
bio energy, 175–83. See also bio solar energy
biomass, 182–3
solar efficiency, 180
storage efficiency, 179
thermodynamics, 175–9
biomass, 50f, 182–3, 204
biomolecules, 20–8
damage from solar ultraviolet, 21–2
melanins, 25–8
ozone filter protection, 22–4
spectroscopy, 20–1
bio solar energy, 203–13. See also bio energy
artificial photosynthesis, 209–13
biochemistry, 207–8
biological vs. technological systems, 204–7, 440f
C3 vs. C4 plants, 208
photoprotection, 208
proton-couple electron transfer, 211–13
solar fuels, 213
black body, 3, 7, 83
black-body radiation, 7–9, 38f, 44
black dye, 199
blade, 163
blue-green algae, 4
boiling water reactor (BWR), 224
Boltzmann’s constant, 8
Boltzmann’s distribution, 15, 177, 250
Boltzmann tail, 154
Born-Oppenheimer approximation, 338, 349
Brayton cycle, 115
break-even point, 137
Bremsstrahlung, 239
Brownian motion, 262
buckling parameter, 231–2
buoyancy flux, 328
butane, 112
C3 plants, 208
C4 plants, 208
caffeine, 390
Calvin/Benson cycle. See Calvin cycle
Calvin cycle, 208, 213
Canadian deuterium-uranium reactor (CANDU), 224
capacity factor, 168
capital costs, 134–7
capital recovery factor, 136
carbon cycle, 63–6
atmosphere-land interaction, 65–6
land-use change, 64
ocean-atmosphere interaction, 64–5
steady state, 66
carbon dioxide (CO2)
in atmosphere-land interaction, 65–6
concentrations in the atmosphere, 49f
equivalent concentration, 72
and global warming, 46–7
in ocean-atmosphere interaction, 64–5
pollution, 126–7
sequestration, 126
carbon monoxide (CO), 126–7
carcinogenic chemicals, 392
Carnot cycle, 103–4
Carnot efficiency, 95–7, 102, 104, 114, 115
carotenoids, 186, 208, 209
catalyst, 132
Cauchy-Riemann equations, 295
chaos theory, 69
charge separation, 184f, 190–3
chemical potentials, 94
chemicals, 390–2
chemisorption, 302
Chernobyl accident, 236, 247
chimney, 322–3, 325–6
chlorofluorocarbons (CFCs), 24, 112–13, 396
chlorophyll-a, 4
chord line, 162, 163
chromophores, 21, 355
circumstal pond, 298
Clausius inequality, 92, 95
climatic
modeling, 66–7
protection of, 396–8
radiative forcing, 71f
schematic view of components, 429f
variability, 59–62
climatic change. See also global warming
forecasts, 70–4
human-induced, 63–70
models, 63–70
climatic sensitivity parameter, 47
climatic system, 51–9
components of, 32f
dynamics in, 51–9
horizontal motion of air, 53–8
horizontal motion of ocean waters, 59
vertical motion of ocean waters, 58–9
clouds, 36
albedos, 40f
cumulus, 37f
finite-size, 265–6
coal, 125–6
coefficient of performance (COP), 96–7, 111
cogeneration, 116–17
coherence, 189–90
combined cycle power systems, 115–16
combined heat power (CHP), 116–17
combustion, 101–2
complementary error function, 420–1
composite lineshapes, 345
concentrating solar power (CSP), 146, 150–2
condenser, 110 f
conduction, 79–81
conduction band, 153
confined aquifers, 283
flow around source or sink, 298–300
simple flow in, 298–301
source or sink in uniform flow, 300–1
time dependence in, 301–2
conformal mapping, 295
conservation of mass, 289–90
contact coefficient, 80 t, 89
contact temperature, 89–90
continuous point source, 267–9, 321–2
convection, 82
convection heat transfer coefficient, 82
converters, 173–4
convolution, 267
cooling towers, 129
Coriolis acceleration, 313
Coriolis force, 55, 56 f
Coulomb barrier, 238
covalent bond, 152–3
critical size, of reactor, 231–2
cumulus cloud, formation of, 37 f
curie, 244
cut-in speed, 168
cut-off ratio, 109
cut-out speed, 168
cyanobacteria, 4, 182, 208, 214, 442 f
cytosine, 20, 21
dams, 169–70
Darcy’s equations, 286–8, 289
Darcy’s Law, 286–8
DC lines, 124
decay heat, 235–6
decay of excited states, 357–8
deep rock, 254
delayed neutron emission, 223
density, 80 t
dephasing, 344
desorption, 302–4
deterministic processes, 246
deuterium, 238
DIAL (differential absorption lidar), 370–1
diatom molecules, 349–51
diesel engine, 108–9
differential absorption lidar (DIAL), 370–1
diffuse radiation, 366
diffusion, 262–70
continuous point source in three dimensions, 267
effect of boundaries, 269–70
equations, 262–7
finite-size cloud, 265–6
instantaneous line/point sources in three dimensions, 266
instantaneous plane source in three dimensions, 264–5
in uniform wind, 267–9
continuous point source, 267–9
instantaneous point source, 267
diffusion coefficients, 262–3
diffusion constant, 262
diffusion current, 155–6
diffusivity, 262
dimensional analysis, 166, 328–9
dinosaurs, extinction of, 40
diode current, 156
direct normal irradiation (DNI), 148
direct radiation, 366
dispersion-advection equation, 303
dispersion of pollutants, 261–333
diffusion, 262–70
continuous point source in three dimensions, 267
effect of boundaries, 269–70
equations, 262–7
finite-size cloud, 265–6
instantaneous line/point sources in three dimensions, 266
instantaneous plane source in three dimensions, 264–5
in uniform wind, 267–9
fluid dynamics, 304–16
equations of motion, 308–9
Navier-Stokes equation, 310–11
Newtonian fluids, 309–10
Reynolds number, 311–13
stress tensor, 304–8
turbulence, 313–16
Gaussian plumes in air, 317–26
building a chimney, 325–6
continuous point source, 321–2
empirical determination of dispersion coefficients, 323–4
from high chimney, 322–3
semi-empirical determination of dispersion parameters, 324–5
statistical analysis, 319–21
in groundwater, 282–302
adsorption of pollutants, 302–4
aquifer between two canals, 297–8
circular pond, 298
conservation of mass, 289–90
Darcy’s equations, 286–8
definitions, 283–5
desorption of pollutants, 302–4
Dupuit approximation, 295–8
Index

dispersion of pollutants (Continued)
 flow underneath walls, 292–3
 hydraulic potential, 285–6
 method of complex variables, 293–5
 simple flow in confined aquifers, 298–301
 stationary applications, 290–5
 time dependence in confined aquifer, 301–2
 vertical flow, 290–2
 vertical flow in unsaturated zone, 288–9
in rivers, 270–82
 continuous point emission, 278–9
 dilution of pollution, 280–1
 improvements, 281–2
 influence of turbulence, 275–7
 mixing length, 281
 one-dimensional approximation, 271–4
 Rhine River calamity model, 277–8
 turbulent jets and plumes, 326–33
 divergence, 415–16
 DNA, absorption spectra of, 20–1
 DNA bases, 30
 DOAS method, 365–6
 Dobson units, 368
 donor impurity, 154
 Doppler broadening, 344
 dose-effect relation, 391
 drag coefficient, 130–4
 dry adiabat, 35–6
 Dupuit approximation, 295–8
 dye sensitized solar cell (DSSC), 202
 dynamic viscosity, 54–5, 310
earth
 angular velocity, 410 t
 eccentricity of orbit, 61–2
 elliptical orbit, 62 f
 energy transport to poles, 52
 gravitation acceleration, 410 t
 radius, 410 t
 rotation, 55
earthquakes, 398–9
eddy viscosities, 276
Einstein coefficients, 14–15, 341
elastic scattering, 359
electric car, 133
electricity, 113–14
 co-generation of heat and electricity, 115–17
 grid load, 114–15
 storage, 117–23
 batteries, 119–20
 flywheels, 117–19
 hydrogen fuel cell, 120–2
 pumped hydro storage, 120
 superconducting mechanical energy storage, 119
 transmission of, 123–4
electronic excited state, 185
electronic spectra, 340–1
electronic transitions, 353–8. See also rotational transitions; vibrational transitions
decay of excited states, 357–8
 Franck-Condon principle, 355–7
 molecular orbitals, 353–5
transition dipoles, 353–5
electron spin resonance spectroscopy, 340
emission spectroscopy, 339
emissivity, 83
energetic disorder, 193
ergy, 380–8
 consumption, 380–2
 conventional reserves, 382 t
 conversion, 386 t
 efficiency, 385
 options, 387–8
 physical and numerical constants, 409 t
 resources, 382–3, 384–7
 sustainable, 1–2
 technological fixes, 386–7
 world energy use by fuel, 382 t
energy-break even criterion, 241
ergy conversion, 134–8
 break-even point, 137
 building times, 136–7
 capital costs, 134–7
 learning curve, 138
 levelized end-of-year cost, 136
 rest value, 136
energy gap, 153
energy levels, 341
energy supply
 light absorption, 4
 in society, 78 f
 sustainable, 1–2
enrichment, 249–51
 gas centrifuge, 250
gaseous diffusion, 250
 laser separation, 250
 and nonproliferation, 256–7
enthalpy, 93
ENVISAT satellite, 362
equation of continuity, 263
equivalent CO$_2$ concentration, 72
equivalent CO$_2$ emission, 49
error function, 420
ethane, 132
ethanol, 131, 132 f
 eumelanin, 25–7
evaporator, 110 f
event tree, 393–4
excited state intramolecular proton transfer (ESIPT), 27
excited states, decay of, 357–8
exciton, 188–9, 439–
f exempt waste (EW), 253–5
exergy, 100–1
loss of, 101–2
Eyjafjallajökull volcanic eruption, 374–5
Faraday’s Law, 113
far ultraviolet (UV-C), 21
fast fission reactor, 227
Fermi-Dirac distribution, 154
Fick’s law, 262
First Law of Thermodynamics, 91–2
fluid dynamics, 304–16
 equations of motion, 308–9
 Navier-Stokes equation, 310–11
 Newtonian fluids, 309–10
 Reynolds number, 311–13
 stress tensor, 304–8
 turbulence, 313–16
fluidized bed, 126
fluorescence, 357
fluxes, 8
flywheels, 117–19
forced convection, 82
formaldehyde, 131
fossil fuels, combustion of, 50
four factor formula, 226–9
Fourier coefficient, 80
Fourier’s law, 79
free electrons, 154
free energy, 93–4
freezer, 97
fresh water, 389
friction velocity, 166
fuel cell, 120–2
Fukushima accident, 236–7, 247
fusion product, 243
gain factor, 46
Galilei transformation, 162, 272
gas centrifuge, 250
gaseous diffusion, 250
gasohol, 131
Gauss distribution, 321
Gauss function, 264–5, 419–20
Gaussian plumes, 317–26
 building a chimney, 325–6
 continuous point source, 321–2
 empirical determination of dispersion coefficients, 323–4
 from high chimney, 322–3
 semi-empirical determination of dispersion parameters, 324–5
 statistical analysis, 319–21
Gauss’s Law, 416
general circulation models (GCMs), 66–7, 73
 boundary conditions, 69
 structure of, 68
 generation current, 156
Generation IV International Forum (GIF), 257
Generation IV nuclear reactors, 257–8
geo-engineering, 397–8
giostrophic flow, 56–7
giothermal heat flow, 4
Gibbs free energy, 94, 119–20, 175, 180
 glacial period, 59–60
Glauber salt, 90
global environmental management, 398–401
global warming, 45–8. See also climate change
effects mitigating, 47
effects reinforcing, 46–7
radiative forcing, 45–6
time delay by ocean warming, 47–8
global warming potential (GWP), 48, 49
 gradient, 414–15
 gradient operator, 417
Grätzel cell, 196–203
 applications, 203
dye, 202
efficiency of, 199–201
electrolyte, 202–3
 energetic losses, 200–1
 new developments, 202–3
 principle, 196–9
 quantum efficiency, 199–200
gravitational storage, 120
gravity, 56
grey, 244
 greenhouse effect, 3–4
 human-induced, 49
 and radiation balance, 36–51
 greenhouse gases, 48–51
 equivalent CO$_2$ emission, 49
 global warming potential, 49
 human sources of, 51
 increase of concentration over time, 50
 IR absorption, 3–4, 39, 44
 and upward flux, 42
 warming effect, 48
 grey body, 83
 grid load, 114–15
 groundwater, dispersion of pollutants in, 282–302
 adsorption of pollutants, 302–4
 aquifer between two canals, 297–8
 circular pond, 298
 conservation of mass, 289–90
 Darcy’s equations, 286–8
 definitions, 283–5
 desorption of pollutants, 302–4
Index

groundwater, dispersion of pollutants in (Continued)
 Dupuit approximation, 295–8
 flow underneath walls, 292–3
 hydraulic potential, 285–6
 method of complex variables, 293–5
 simple flow in confined aquifers, 298–301
 stationary applications, 290–5
 time dependence in confined aquifer, 301–2
 vertical flow, 290–2
 vertical flow in unsaturated zone, 288–9
groundwater head, 286
groundwater table, 288
guanine, 20
Gulf Stream, 53, 59

Hadley model, 72
haemoglobin, 21
half life, 225
Hamiltonian, 12
Harrisburg accident, 236, 247, 393–4
heat, 95–7
heat current density, 79
heat diffusion equation, 87–90
heat engines, 77–8
 Carnot cycle, 103–4
 efficiency of, 97–8
 internal combustion, 107–9
 diesel engine, 108–9
 Otto cycle, 107–8
 pollution, 125–9
 aerosols, 127–8
 carbon dioxide (CO₂), 126–7
 carbon monoxide (CO), 126–7
 nitrogen oxides, 125–6
 regulation, 129
 SO₂, 126
 thermal pollution, 129
 volatile organic compounds, 128–9
steam engine, 105–7
Stirling engine, 104–5
heat flow, 4
heat pipe, 83–4
heat pump, 96
heat resistance, 81
heat storage, 90–1
heat transfer
 in common materials, 80
 conduction, 79–81
 convection, 82
 experiments, 423–4
 phase change, 83–4
 radiation, 82–3
highest occupied molecular orbital (HOMO), 355
high-level waste (HLW), 253
high voltage direct current (HVDC) lines, 124
homogenous broadening, 342–4
homonuclear atom, 348–9
human-induced greenhouse effect, 49
hybrid car, 134
hydraulic conductivity, 285, 423
hydraulic potential, 285–6
hydrochlorofluorocarbons (HCFCs), 112–13, 396
hydrodynamic dispersion, 302–3
hydrofluorocarbons (HFCs), 50, 111
hydrogen economy, 122–3
hydrogen fuel cell, 120–2
hydrostatic equation, 34
ice, 39–40
ice age, 59–60
ICRP (International Commission on Radiological Protection), 245–7
ideal gas, 34
ignition criterion, 242
impervious layers, 283
infrared (IR) radiation, 3–4
inhomogenous broadening, 344–5
instantaneous point source, 267
Intergovernmental Panel of Climate Change (IPCC), 31–2, 70, 396
internal combustion, 107–9. See also heat engines
diesel engine, 108–9
Otto cycle, 107–8
International Commission on Radiological Protection (ICRP), 245–7
International Energy Agency (IEA), 381
International Thermonuclear Experimental Reactor (ITER), 243–4
ionosphere, 33
isobutene, 112
ITER (International Thermonuclear Experimental Reactor), 243
jj coupling, 346
junction, 155
kinematic viscosity, 311
Kolmogorov scales, 315–16
Kronecker delta tensor, 306
Kuroshio, 53
Kyoto Protocol, 397
Lambert-Beer’s law, 16–19, 42, 367
Laplace equation, 290
Laplace operator, 88, 416–17
laser Doppler anemometry (LDA), 424
laser remote sensing, 424
laser separation, 250
Lawson criterion, 241–2
learning curve, 138, 152
Index 435

learning rate, 138, 152
lethal dose, 391
levelized electricity cost, 152
levelized end-of-year cost, 136
lidar, 368–76. See also remote sensing by satellites; spectroscopy
backscatter, 370–3
differential absorption, 370–1
equation, 369
Eyjafjallajökull volcanic eruption, 374–5
Raman, 370–1, 373
ratio, 372
light absorption, 4, 5
biomolecules, 20–1
Lambert-Beer’s law, 16–19
light-harvesting antennas, 185–7
limb viewing, 363
linear rotors, 348
linewidths, 342–5
composite lineshapes, 345
homogenous broadening, 342–4
inhomogenous broadening, 344–5
liposome, 210
liquefied natural gas (LNG), 131
liquefied petroleum gas (LPG), 131
lithium, 238
longitudinal dispersion coefficient, 274
Lorentzian shape, 343
low- and intermediate-level waste (LILW), 253–5
lowest occupied molecular orbital (LOMO), 355

majority carriers, 155
Malthus, Thomas Robert, 380
many-electron atoms, 346
marine biological pump, 65
mass, conservation of, 289–90
mass flux, 327
Maxwell-Boltzmann distribution, 223
mean lifetime, 225
melanins, 25–8
Meridional Overturning Circulation (MOC), 59, 67, 74
mesopause, 32, 33
mesosphere, 32, 33
methane (CH₄), 46, 132
methanol, 131, 132
mid ultraviolet (UV-B), 21
Mie scattering, 340, 359
Milankovich variations, 60–2
minority carriers, 155
mixed oxide fuel (MOX), 252
molar extinction coefficient, 18
molecular diffusion, 262
molecular recognition, 204
molecular spectra, 347–58. See also spectroscopy
electronic transitions, 353–8
decay of excited states, 357–8
Franck-Condon principle, 355–7
molecular orbitals, 353–5
transition dipoles, 353–5
rotational transitions, 347–9
linear rotors, 348
selection rules, 348–9
spherical rotors, 347–8
symmetric rotors, 348
vibrational transitions, 349–53
diatomic molecules, 349–51
polyatomic molecules, 352–3
vibrational-rotational spectra, 351

moment of inertia, 118
momentum flux, 327, 331
Montreal protocol, 50, 396
Morse potential, 349–50
motion, equations of, 308–9
multiplication factor, 227, 228
nacelle, 159
nadir viewing, 363
NAD(P)H, 204, 207
naphthoquinone, 209
natural gases, 132
Navier-Stokes equation, 310–11, 318
near ultraviolet (UV-A), 21
neutron current density, 230
neutron flux, 230
neutron production factor, 227
Newtonian fluids, 309–10
Newton’s law of cooling, 82
nitrogen oxides (NOₓ), 125–6
nonleakage probability, 232
nonphotochemical quenching, 208
nonproliferation, 256–7
no-regret policy, 395
normal stresses, 306, 307
Northern Hemisphere, 61–2
n type Si, 154
nuclear explosives, 237–8
nuclear fission, 222–38
decay heat, 235–6
four factor formula, 226–9
macroscopic cross section, 225–6
nonleakage probability, 232
nuclear explosives, 237–8
principles, 222–6
radioactive decay, 225
reactor equations, 229–31
reactor safety, 234–7
rectangular reactor, 232
stationary reactor, 231–2
time dependence of reactor, 233–4
nuclear fusion, 238–44
health aspects of, 247–8
Tokamak design, 238, 239
nuclear magnetic spectroscopy, 339–40
nuclear power, 221–58
fuel cycle, 248–57
enrichment, 249–51
izer burnup, 252
nonproliferation, 256–7
uranium mines, 249
reprocessing, 252
plutonium, 234
nuclear fusion, 238–44
radiation, 244–8
norms on exposure, 245–6
from nuclear accidents, 247
nuclear safety, 234
nuclear reactors, fourth generation, 257–8
nuclear reactors, 257
active safety, 234
Chernobyl accident, 236, 247
Fukushima accident, 236–7
Harrisburg accident, 236, 247
inherent safety, 234
safety of, 234–7
scheme of, 224
nuclear tunneling, 192
nuclear waste management, 253–5
deep rock, 254
partitioning, 255
salt domes, 254
transmutation, 255, 256
nuclear winter, 40
numerical constants, 409–10
occultation mode, 363
oceans
circulation, 53
horizontal motion of waters, 59
ocean-atmosphere interaction, 64–5
vertical motion of waters, 58–9
ocean warming, 47–8
octadecane, 90
one-dimensional dispersion equation, 271
one-electron atoms, 345–6
optical density, 7, 18, 19
optical depth, 18
orbit, eccentricity of, 60–1
organic photocells, 196–203
aplications, 203
dye, 202
efficiency of, 199–201
electrolyte, 202–3
enetic losses, 200–1
new developments, 202–3
principle, 196–9
quantum efficiency, 199–200
Otto cycle, 107–8
oxidation, 198
oxidative phosphorylation, 204
ozone layer, 22–4, 368, 396
partitioning, 255, 302
Pasquill stability categories, 323, 324
pendulum, 189–90
perfluorinated compounds (PFCs), 50
periodic heat wave, 88
phase change, 83–4
pheomelanin, 25–7
phosphorescence, 358
photoprotection, 193–5, 208
photovoltaics (PV), 146, 152–9
costs, 158–9
efficiency of, 157–8
phreatic surface, 288
phycolisome, 4
phyocyanin, 4
phycoerythrin, 4
physical constants, 409–10
pigment, 184
Pinatubo eruption, 62
pipes, flow through, 313
pitch control, 168
Planck energy distribution, 8
Planck’s constant, 8
plasma, 238
plastoquinol, 211–13
plastoquinone, 211–13
Poission equation, 35
Index 437

Poisson relation, 108
poles, energy transport to, 52
pollution, 125–9
 aerosols, 127–8
 carbon dioxide (CO₂), 126–7
 carbon monoxide (CO), 126–7
 nitrogen oxides, 125–6
regulation, 129
SO₂, 126
thermal, 129
volatile organic compounds, 128–9
polyatomic molecules, 352–3
porosity, 285
porphyrin, 209–10
power laws, 398–400
pressure gradient forces, 54
pressurized water reactor (PWR), 224
private cars. See automobiles
propane, 112
protonmotive force, 204
p type Si, 154
²³⁹Pu, 237–8
pumped hydro storage, 120
pyrimidine dimer, 21
Q-band electron spin spectroscopy, 340
quantum yield, 358
quicksand, 292
quinone, 210
radiation, 82–3
 black-body, 7–9, 38 f, 44
 diffuse, 366
 direct, 366
 and health, 244–6
 deterministic processes, 246
 norms on exposure, 245 t
 stochastic processes, 246
 units, 244
 upper limits per year, 245 t
 weighing factors, 244 t
 thermal, 38 f
radiation balance, 36–48
analytical model, 44–5
changes in, 39–40
cool sun, 40
for earth and atmosphere, 38 f
extinction of dinosaurs, 40
and global warming, 45–8
nuclear winter, 40
radiation transfer, 41–4
white earth, 39–40
radiation flux, 8
radiative forcing, 45–6, 71 f
radiative transfer models, 366–8
radioactive decay, 225
radon, 249, 424
Raman lidar, 370–1, 373, 444 f
Raman scattering, 359–60
Raman spectroscopy, 340–1
Rankine cycle, 105
rated wind speed, 168
Rayleigh distribution, 168
Rayleigh scattering, 359, 361–2
reaction centre, 184, 187, 438 f
recombination current, 155
rectangular reactor, 232
reduction, 198
refrigeration, 110–13
absorption, 113
vapour-compression cycle, 110–13
refrigerator, 96 f, 97
rem, 244
remote sensing by satellites, 362–8
 analysis, 364–8
 DOAS method, 365–6
 iteration procedure, 368
 radiative transfer models, 366–8
 ENVISAT satellite, 362
 ozone results, 368
 SCIAMACHY, 362–4
 sun-synchronous orbit, 362
renewable energy, 145–215
 bio energy, 175–83
 bio solar energy, 203–13
 organic photocells, 196–203
 solar power, 146–59
 wind energy, 159–69
reorganization energy, 191
reprocessing, 252, 257
resonance escape probability, 227
resonance Raman scattering, 360–1
rest value, 136
Reynolds number, 311–16, 327
Rhine River, 277–8
Rhodopseudomonas viridis, 190–3, 438 f
risks, 389–90
 acceptable, 392–3
 estimation, 390
rivers, dispersion in, 270–82
 continuous point emission, 278–9
 dilution of pollution, 280–1
 improvements, 281–2
 influence of turbulence, 275–7
 mixing length, 281
 one-dimensional approximation, 271–4
 Rhine River calamity model, 277–8
 rivers, power from, 170
²²²Rn, 249
Index

rolling resistance, 130–4
rotational spectroscopy, 340
rotational transitions, 347–9. See also electronic transitions; vibrational transitions
linear rotors, 348
selection rules, 348–9
spherical rotors, 347–8
symmetric rotors, 348
Rubisco, 208
Russel-Saunders coupling, 346
salt domes, 254
sand pile, 400–1
satellite remote sensing, 362–8. See also lidar analysis, 364–8
DOAS method, 365–6
iteration procedure, 368
radiative transfer models, 366–8
ENVISAT satellite, 362
ozone results, 368
SCIAMACHY, 362–4
sun-synchronous orbit, 362
saturated adiabat, 36
sclerotized diabat, 36
saved fossil fuel energy, 381
scalar field, 414
scalar product, 412
scalar quantity, 412
scale height, 34
scattering, 359–62. See also spectroscopy in the atmosphere, 362
Raman, 359–60
Rayleigh scattering, 361–2
resonance Raman, 360–1
Schrödinger equation, 12, 349
SCIAMACHY, 362–4
analysis, 364–8
DOAS method, 365–6
iteration procedure, 368
ozone results, 368
radiative transfer models, 366–8
science
aims of, 402–4
contribution of, 5–6
control of, 402
nature of, 401–2
and society, 404
sea-level rise, 73
sea surface temperature (SST), 60
Second Law Efficiency, 98–9
seepage face, 298
selection rules, 341–2, 348–9
self-heating criterion, 242
self-organized criticality, 398–401
sensitive technologies, 256
shearing stresses, 306
shear velocity, 166
Si crystal, 152–5
sievert, 244
skin effect, 124
smart buildings, 149–50
snow, 39–40
SO2, 126
soil moisture, 289
solar cells, 152
costs, 158–9
efficiency of, 157–8
solar collector, 84–7
solar constant, 3
solar erythemal effectiveness, 21, 22
solar influx, 36–7
solar power
concentrating solar power, 150–2
photovoltaics, 152–9
smart buildings, 149–50
varying solar input, 146–9
solar radiation, 38
solar tracking, 148
sorption, 302
Southern Hemisphere, 61–2
specific discharge vector, 285
specific energy, 118
spectroscopy, 337–41
absorption lines, 341
atomic spectra, 345–7
many-electron atoms, 346
one-electron atoms, 345–6
electron spin resonance spectroscopy, 340
emission spectroscopy, 339
linewidths, 342–5
composite lineshapes, 345
homogeneous broadening, 342–4
inhomogeneous broadening, 344–5
molecular spectra, 347–58
nuclear magnetic spectroscopy, 339–40
population of energy levels, 341
Raman spectroscopy, 340–1
rotational spectroscopy, 340
scattering, 359–62
in the atmosphere, 362
Raman, 359–60
Rayleigh scattering, 361–2
resonance Raman, 360–1
selection rules, 341–2
transition dipole moments, 341–2
X-ray spectroscopy, 341
spherical rotors, 347–8
stall control, 168
state function, 91–2
stationary reactor, 231–2
steam engine, 105–6
Index

Stefan-Boltzmann’s law, 3, 9, 39
Stirling engine, 104–5
stochastic processes, 246
Stokes Raman scattering, 340, 359–60
storage coefficient (aquifer), 302
storativity (aquifer), 302
stratopause, 32, 33f
stratosphere, 32, 33f
stream function, 294
stress, 304
stress tensor, 304–8
summation convention, 305
sun
annual motion of, 146f
cool, 40
emission spectrum of, 9–12
sun curtains, 149
sun-synchronous orbit, 362
superconducting mechanical energy storage (SMES), 117, 119
superconductivity, 123
supergrids, 124
superposition principle, 300
sustainable development, 1
sustainable energy supply, 1–2
swept area, 159
symmetric rotors, 348
syphon, 83–4
tangential stresses, 166, 306, 307f
Taylor’s theorem, 320
temperature
contact, 89–90
sudden change in, 89
terrestrial outflux, 36–7
thermal conductivity, 79, 80f, 423
thermal efficiency, 96, 108
thermal emissivity, 423–4
thermal neutrons, 223
thermal pollution, 129
thermal radiation, 38f
thermal utilization factor, 227
thermodynamics, 77
 first law, 91–2
 second law, 92–3
thermolaline circulation, 59, 67, 74
thermosphere, 32, 33f
thermosyphon, 83–4
three-way catalytic converter, 132–3
thymine, 20
tidal power, 174
Tokamak design, 238, 239f
total solar irradiance, 3
transition dipole moments, 12–14, 341–2
transmission, 123–4
transmissivity, 299
transmutation, 255, 256f
transuranic nuclei, 252
tritium, 238, 247–8
tropopause, 32, 33f
troposphere, 32–4
tryptophan, 21
turbulence, 313–16
dimensional analysis and scales, 313–15
and dispersion in rivers, 275–7
Kolmogorov scales, 315–16
turbulent diffusion, 316
simple jet, 329–30
simple plume, 331–3
transmutation, 255, 256f
transuranic nuclei, 252
unconfined aquifers, 283, 295
uniform flow, 300–1
United Nations Environmental Program, 396
United Nations Framework on Climate Change, 397
unsaturated zone, 284, 288–9
uranium mines, 249
vadose zone, 284
valence band, 153
vapour-compression cycle, 110–13
vector product, 412–13
vectors, 411–17
divergence, 415–16
field, 413–14
Gauss’s Law, 416
gradient, 414–15
gradient operator, 417
Laplace operator, 416–17
scalar product, 412
vector product, 412–13
vernal equinox, 61f
vertical flow, 288–9
vertical wind profile, 165–7
vibrational-rotational spectra, 351
vibrational transitions, 349–53. See also electronic transitions; rotational transitions
diatomic molecules, 349–51
polyatomic molecules, 352–3
vibrational-rotational spectra, 351
vibronic state, 355
vibronic transition, 355
vibronic wavefunction, 350
viscous forces, 54–5
Index

volatile organic compounds (VOCs), 128–9
voltage, 120
volume flux, 327, 331
von Karman constant, 166

wake, 163–5
water, 169–74, 389
 fresh-water resources, 389
kinetic energy, 170
 physical and numerical constants, 410
potential energy of, 169–70
power from dams, 169–70
power from flowing rivers, 170
power from tides, 174
power from waves, 170–4
wave function, 171
wavenumber, 339
waves, 170–4
web sites, 425–6
Weibull probability distribution, 167–8
wet scrubbers, 126
wet towers, 83
white earth, 39–40
Wien’s displacement law, 9
wind energy, 159–69
 aerodynamics, 162–5
 blade design, 163
 wake, 163–5
Betz limit, 160–2
outlook, 168–9
vertical wind profile, 165–7
wind farms, 165
wind statistics, 167–8
wind farms, 165
windmills, 159
wind tower, 150
wind turbine, 159
work, 95–7
World Health Organization (WHO), 129
World Meteorological Organization, 396

X-ray spectroscopy, 341