• Symbols and Numerics •

: (colon), 292
> (the definition line), FASTA program, 48
1000 bp (kb), 23
. (period), 292
<PRE> parasite character, 52
// (slash marks, two), 77
* (star), 292

3-D protein structure
 additional structural features, predicting, 334–336
 computer, folding in, 351
 described, 329–330
 guessing, 340–342
 homology modeling, 351
 interactions, predicting, 352
 interactive exploration, 344–349
 interplay between multiple alignments and structural analysis, 343–344
 local segments, 330
 in movement, looking at, 352
 patterns, identifiable, 178
 PDB structures, 350–352
 from primary to, 336–337
 retrieving and displaying from PDB site, 337–340
 sample, illustrated, 16
 secondary structure, predicting, 330–334
 sequence and structure, interactive analysis, 349–350
 sequence/PDB structure relationship, interactive exploration, 344–349
 sequences, analyzing, 14–16
 similar shapes, finding proteins with, 350

3'-terminus, 18
5'-terminus, 18

• A •

A or G, IUPAC code, 19
accession number
 GenBank entry, 74, 81
 Swiss-Prot, 111–112
AceDB suite, 154
Acembly engine, 154
adenine (A)
 IUPAC code, 19
 RNA nucleotide sequence letters, 21
Aeropyrum pernix, 96–97
alanine, 11
Align pairwise alignment program, 263
alignments, 238, 263
alignments, BLAST. See also PSI-BLAST
 alignments, 213, 215–216
 biological questions, asking, 218–219
 complementary property, 20
 described, 57–58, 199, 413
 DNA sequences, overview, 216–218
 EMBnet blastp, 207–209
 graphic display, 211–212
 hit list, 212–213
 homologues, 214
 hybridizing primers, 138
 NCBI blastp, 202–207
 output, 209–210, 224–225
 parameters, 216, 219–220, 223–224
 protein domains, discovering and using, 230–231
 protein sequences, handling, 201–202
 results, 60–61
 sequence masking, 220–223
 servers, alternative, 231–233
 starting, 58–60
 alignments, local
 benefits of using, 255
 described, 238, 254
alignments, local (continued)
 Lalign output, interpreting, 258–261
 Lalign to find ten best, 256–258
 methods, choosing, 255–256
alignments, multiple sequence
 ClustalW, 282–287, 300
 common ancestor, 266
 common ancestor, sequences without, 297–299
described, 265–266
DNA or protein sequences, 272
evolutionary constraints, revealing, 294–297
guidelines for selecting, 271
Internet resources, 299–302
interpreting, difficulties of, 291–292
method, choosing, 281
motif-finding methods, addresses listed, 301–302
MUSCLE, crunching large datasets with, 291
 naming correctly, 275
 number, choosing right, 272–273
 online BLAST servers, 275–281
 phylogenetic analysis, 380–382
 protein alignment, recognizing good parts, 292–293
research, helping, 267–270
selecting correct sequence, 270
similarity versus new information, 273–274
Tcoffee, 287–291
when not to use, 267
alignments, multiple sequence, editing and publishing. See also formatting
 beautifying tools, 325
 Boxshade utility, 319–321
described, 303–304
ingressing packages, 323–324
 Logos, generating high-impact pictures with, 322–323
tools for extracting information, 324
 Alion pairwise alignment program, 263
 ALN multiple sequence alignment format, 307, 309–310
Amas tool, 324
ambiguity, 13
amino acid
 ambiguity, 13
lost in reformatting, 312
patterns of conservation, 293
protein sequences, analyzing, 10–12
ancestor, multiple sequence alignment with common, 266
ancestor, sequences without common conserved patterns, searching, 299
described, 297–298
Gibbs sampler, 298
annotation, lost in reformatting, 312
applications. See also individual programs listed by name
described, 412
listed, 413
archae, 70
arginine, 11
ArrayExpress resource locator, 414
asparagine, 11, 13
aspartic acid, 11, 13
Assembler from The Institute for Genome Research (TIGR), 154
assembling fragments for single DNA sequence
 CAP3 documentation, 155–157
 machines, limitations of, 153
 public software, managing large projects with, 154–155
author’s names, searching PubMed by, 32–35

B

bacterial genomes, 92–94
Bairoch, Amos (ExPASy server creator), 42, 175
base pairs (bp), 23
Basic Local Alignment Search Tool. See BLAST
BCM ClustalW server, 300
Belvu package, 323
beta-strands, 330
Bielefeld resource locator, 414
binding sites, 21
biochemistry, computer
 ExPASy server, 160
 protease digestions, 166
Swiss EMBnet, 160
biochemistry sites, 125
Bioedit package, 324
bioinformatics, defined, 9–10
Bioinformatics Web site, 415
Bio-informer resource locator, 414
biological ancestor, multiple sequence alignment with common, 266
biological ancestor, sequences without common conserved patterns, searching, 299
described, 297–298
Gibbs sampler, 298
biological dot plot analysis, 249–254
BioNJ phylogenetic tree interface, 401
Bioprospector motif-finding method, 302
BLAST (Basic Local Alignment Search Tool). See also PSI-BLAST
alignments, 213, 215–216
biological questions, asking, 218–219
complementary property, 20
described, 57–58, 199, 413
DNA sequences, overview, 216–218
EMBnet blastp, 207–209
graphic display, 211–212
hit list, 212–213
homologues, 214
hybridizing primers, 138
NCBI blastp, 202–207
output, 209–210, 224–225
parameters, 216, 219–220, 223–224
protein domains, discovering and using, 230–231
protein sequences, handling, 201–202
results, 60–61
sequence masking, 220–223
servers, alternative, 231–233
starting, 58–60
Blast2seqs pairwise alignment program, 263
blastn, 217
blastx, 217
BLAT database search engine, 232, 233
Blockgap tool, 324
BLOCK-Maker motif-finding method, 302
BLOCKs domain collection, 183
Blocks tool, 324
Boehringer site, exploring biochemical pathways through, 125–126
Bork, Dr. Peer (European Molecular Biology Laboratory senior scientist), 262
bottom cursor, Dotlet, 247
Boxshade tool, 319–321, 325
bp (base pairs), 23
branch, phylogenetic tree, 399
breast-cancer-susceptibility gene of type 1 (Brca1), 237

• C •

C (cytosine)
composition, analyzing single DNA sequence, 138–139
IUPAC code, 19
RNA nucleotide sequence letters, 21
CAP3 documentation, 155–157
cap3 sequence assembly tool, 267
CATH (Class, Architecture, Topology, Homologous superfamily), 127
CAZy database, 128
CBS (Center for Biological Sequence Analysis), 171–172
CBS protein sequence analysis, 195
CD (Conserved Domain) server of NCBI described, 187–190
protein sequence analysis, 195
cDNA, 147
CENSOR software tool, 145
Center for Biological Sequence Analysis (CBS), 171–172
Center for Information Technology, NIH, 158
chain peptide, 120
ChemIDplus, 125
chemistry sites, 125
chips, 142
chromosomes, 72
CINEMA package, 323
Class, Architecture, Topology, Homologous superfamily (CATH), 127
ClustalW multiple sequence alignment computing tree, 384–387
described, 282, 284–286, 413
history, 282–283
output, 64–65
parameters, tuning, 286–287
phylogenetic tree, building, 371
servers listed, 300
ClustalW multiple sequence (continued) starting, 62–63
Tcoffee versus, 291
ClustalX color scheme, 315
Clusters of Orthologous Groups (COG) database, 128, 183
coding regions, DNA described, 23–24
position, beginning with different, 25–26
protein sequence, translating into, 24–25
standard genetic code, table of, 25–26
topics covered by chapters, 26
codon, 141
Coffee Corner resource locator, 414
COG (Clusters of Orthologous Groups) database, 128, 183
coiled-coil regions computer, identifying by, 166
primary structure analysis, 174
collection, protein domains, 182–183
colon (:), 292
comments section
EGFR, 114–116
GenBank entry, 75
common ancestor, multiple sequence alignment, 266
common ancestor, sequences without conserved patterns, searching, 299
described, 297–298
Gibbs sampler, 298
comparative genomics, 88
comparisons, pairwise. See also dot plot
described, 235
local alignments over Internet, 254–261
method, choosing, 237–239
proteins and DNA, aligning, 262
sequences, choosing, 236–237
servers, listed, 262–263
complementary property, BLAST, 20
composition, analyzing single DNA sequence
EMBOSS modules, 142
G+C content, 138–139
genome-specific repeats, identifying, 145
internal repeats, finding, 142–144
long words, counting, 140–141
words, counting, 139–140
Comprehensive Enzyme Information System BRENDA, 126
computer
biochemistry using, 160–166
protein 3-D structures, folding in, 351
sequence analysis, roots of, 12
computer, finding known protein domain CD server of NCBI, 187–190
collection, choosing right, 182–183
described, 180–181
Internet tools, 194–195
InterProScan results, interpreting, 185–187
InterProScan server, 183–185
Motif Scan, 190–193
new domains, finding, 194
computer, primary structure analysis coiled-coil regions, 174
properties revealed by, 166
“sliding windows” technique, 167–168
transmembrane segments, 168–174
computer, ProtParam program
described, 161–163
extinction coefficient, 165
half-life, 165
instability, 165
molecular weight, 164–165
conferences Web site, 415
confidence line (Conf), 332
conservation, patterns of, 293
Conserved Domain (CD) server of NCBI
described, 187–190
protein sequence analysis, 195
conserved patterns, searching, 299
contig, 155
CORE tool, 287, 290
covariance phenomenon, 361
CpG rich region finder, 142
cross-references, PIR (Protein Information Resource), 116
C-terminus, 14
cysteine, 11
cytosine (C) composition, analyzing single DNA sequence, 138–139
IUPAC code, 19
RNA nucelotide sequence letters, 21

- D -

DALI software, 413
Database of Interacting Proteins (DIP), 117
databases, addresses listed, 412. See also individual databases listed by name
date range, limiting dUTPase search to, 40
DDBJ ClustalW server, 300
DEFINITION, GenBank entry, 74, 81
definition line (>), FASTA program, 48
deoxyribonucleic acid (DNA)
described, 17
and proteins, aligning, 262
regulatory elements, 269
deoxyribonucleic acid (DNA) coding regions
described, 23–24
position, beginning with different, 25–26
protein sequence, translating into, 24–25
standard genetic code, table of, 25–26
topics covered by chapters, 26
deoxyribonucleic acid (DNA) sequence analysis
described, 17, 216–218
double helix, 18–20
IUPAC code, 19
nucleotide, 23
palindromes, 20–21
reading, 17–18
deoxyribonucleic acid (DNA) sequences, retrieving
introns and exons, 51
from protein sequences, 52–53
relevant to my protein, 53–56
Dnadot program, 240
DNASTAR Lasergene, 154
documentation, CAP3, 155–157
DoE (U.S. Department of Energy) whole-genome database, 96–97
domain
identification, 269
Swiss-Prot, 120–121
domain, protein
CD server of NCBI, 187–190
collection, choosing right, 182–183
described, 180–181
Internet tools, 194–195
InterProScan results, interpreting, 185–187
InterProScan server, 183–185
Motif Scan, 190–193
new domains, finding, 194
dot plot. See also Dotlet
biological analysis, 249–254
described, 143–144, 238, 239–240
inverted repeats, identifying, 144
low-complexity regions in proteins, finding, 253
programs, different types of, 240
tandem repeats, identifying, 250–252
Dotlet
downloading, 241–242
entering sequence in, 242–244
fine-tuning, 245–248
nucleic acids, analyzing with, 253–254
results, interpreting, 248–249
Dotter program, 240
Dottup program, 240
double helix, 18–20
E. coli (Escherichia coli)
DNA sequence, retrieving, 53–57
GenBank entry, 73–77
researching, 42–45
EBI ClustalW server, 300
EBI (European Bioinformatics Institute), 105
editing multiple sequence alignments. See also formatting
beautifying tools, 325
Boxshade utility, 319–321
described, 303–304
ing包ing packages, 323–324
Logos, generating high-impact pictures with, 322–323
tools for extracting information, 324
editing packages, multiple sequence alignment, 323–324
EGF receptor entry, deciphering, 110–111
EGFR (epidermal growth factor receptor)
Comments section, 114–116
Cross-References section, 116–118
deciphering entry, 110–111
Features section, 119–123
general information about entry, 111–112
Keywords field, 118–119
name and origin of protein, 112–114
References section, 114
sequence section, 123
Eisenberg Scale, 171
e-mail address, 332, 389–390
EMBnet
blastp, 207–209
ClustalW server, 300
EMBOSS server (Pasteur Institute)
G+C content, establishing, 138–139
modules, 138–139
word frequency, computing, 140–141
eMotif motif-finding method, 301
Encyclopedia of E. coli Genes and Metabolism, 126
energy dot plot, mfold, 359–360
Ensembl project
described, 98, 412
disease genes, finding with coding SNPs using BioMart data-mining system, 102–104
Human DUT ID card, getting complete, 101–102
Swiss-Prot cross-reference, 118
Web site, starting at, 98–101
Entrez/Gene resource, NCBI server
bacterial genomes, 92–94
described, 413
LOCUS, 86–88
viral genomes, 89–92
Enzymes database, 412
epidermal growth factor receptor (EGFR)
Comments section, 114–116
Cross-References section, 116–118
deciphering entry, 110–111
Features section, 119–123
general information about entry, 111–112
Keywords field, 118–119
name and origin of protein, 112–114
References section, 114
sequence section, 123
Escherichia coli (E. coli)
DNA sequence, retrieving, 53–57
GenBank entry, 73–77
researching, 42–45
ESPript tool, 325
ESTs (expression sequence tags), 154
eukaryotes, 70, 72–73
eukaryotic genomes, gene parsing for, 151
eukaryotic mRNA entry, GenBank
calling, 78–79
FEATURES section, 81–84
fetching, 80
gene sequence, 79
KEYWORD line, 79
keywords, 81
related, working with, 84–85
retrieving without accession numbers, 85–86
European Bioinformatics Institute (EBI), 105
E-value (expectation value)
cutoff point, 225–226
described, 200
hit list, 212
Lalign output, 259
Web-based servers, 408
evolutionary constraints, multiple sequence alignment, 294–297
evolutionary similarity, 268
exceptional amino acids, code for, 13
exons
 described, 72
DNA sequences, retrieving, 51
GenBank entry, 83
 internal, 149–151
vertebrate, 150
ExPASy (Expert Protein Analysis System) server
 described, 42–43
 entry parts, 43–45
FASTA format, 48, 51
parasite characters, warning about, 52
protein sequence analysis, 195
related protein sequences, 48–50
resource locator, 414
restricted searches, 45–47
selecting sequences on, 276–279
similarity searches, 160
expectation value (E-value)
 cutoff point, 225–226
 described, 200
 hit list, 212
 Lalign output, 259
 Web-based servers, 408
experiments, 10
Expert Protein Analysis System. See ExPASy server
 experts, finding through PubMed, 36, 38
 expression, 70
expression sequence tags (ESTs), 154
EXPRESSO tool, 287, 290
extended strands, 330
extrapolation, 269

• F •

FASTA
 database search engine, 232
 format, 48, 51
 multiple sequence alignment format, 306, 308
features section
 EGFR, 119–123
 GenBank entry, 55
 GenBank table, 75, 76–77, 81–84
fields, searching PubMed by, 35–38
5’-terminus, 18
flat-file GenBank entry, 73
fmtseq sequence text converter, 310, 311
folds, UniProtKB/Swiss-Prot database, 109–110
formatting
 converting, 309–311
 correct, working with, 307–309
 losing data, 312
 publications, 307
 variety of, 305–307
formatting, Jalview
 described, 313, 413
 features, 318
 obtaining, 323
 phylogenetic tree, 401
 saving alignment, 318–319
 starting, 314–315
fragments, assembling for single DNA sequence
 CAP3 documentation, 155–157
 machines, limitations of, 153
 public software, managing large projects with, 154–155
From field, Swiss-Prot, 113
functional signatures, 64
functional similarity, 268
functions, UniProtKB/Swiss-Prot database, 109–110

• G •

G (guanine)
 IUPAC code, 19
 RNA nucleotide sequence letters, 21
G (guanosine)
 composition, analyzing single DNA sequence, 138–139
 IUPAC code, 19
gap
 described, 13
 penalties/cost, 223
 type, lost in reformatting, 312
gap-extension penalty
 ClustalW parameter tuning, 286
 described, 258
gap-opening penalty
 ClustalW parameter tuning, 286
 described, 257
Garavelli, John (RESID database maintainer), 124
Gascuel, Olivier (mathematician), 397
GenBank eukaryotic mRNA entry
calling, 78–79
FEATURES section, 81–84
fetching, 80
gene sequence, 79
KEYWORD line, 79
keywords, 81
related, working with, 84–85
retrieving without accession numbers, 85–86
GenBank prokaryotic entry
FEATURES table, 76–77
header, reading, 74–75
sample gene, fetching, 73–74
Sequence section, 77
GenBank/DDBJ/EMBL database, 412
gene density, 71
gene name, Swiss-Prot, 113
gene order formula, 82
gene tree, 377–379
Genebee server, 400
gene-centric database, 69–70
GeneMark, 148–149
genes
eukaryotes, 72–73
parsing for eukaryotic genomes, 151
prokaryotes, 70–72
sequence, GenBank eukaryotic mRNA entry, 79
Genetic Information Research Institute, 145
Genetics For Dummies (Robinson), 70
Genomatix, 139–140
GenomeNet ClustalW server, 300
genomes
eukaryotes, 72–73
first sequence determined, 26–27
genomics, 27–28
prokaryotes, 70–72
repeats, identifying specific, 145
topics covered by chapter, 28
GenomeScan, 151–153
genomics, 27–28
GenScan software, 413
Gibbs Sampler
common ancestor, sequences without, 298
motif-finding method, 301
Gibson, Tobby (ClustalX color scheme developer), 315
global alignments, 238, 254, 261–262

- glutamic acid, 11, 13
- glutamine, 11, 13
- Glycan Structure Database, 125
- glycine, 11
- GlycoSuiteDb, 117
- graph-align pairwise alignment analysis, 263
- Graphic display, CD server, 189
- greater than sign (>) FASTA program, 48
- guanine (G)
 - IUPAC code, 19
 - RNA nucleotide sequence letters, 21
- guanosine (G)
 - composition, analyzing single DNA sequence, 138–139
 - IUPAC code, 19
- Guindon, Stéphane (mathematician), 397

- H -

header, GenBank prokaryotic entry, 74–75
Heiman, Max (Webcutter tool developer), 134
Helix-Turn-Helix (HTH) domain, 298
helices, 330
Hemophilus influenzae genome, 26
Hidden Markov Models, 330–331
Higgins, Des (ClustalW software developer), 282
histidine, 11
hit list
 - BLAST, 212–213
 - CD server, 189
HIV-1 (type-1 human immunodeficiency virus), 89–92
Hogeweg, Paula (ClustalW software developer), 282
homologues
 - BLAST, 214
described, 200
 - protein 3-D structures modeling, 351
search engines, 233
HTH (Helix-Turn-Helix) domain, 298
HUGO (Human Genome Organization Gene Nomenclature Committee), 117
Human Brain Database, 128
Human DUT ID card, getting complete, 101–102
human genome, 97–98. See also Ensembl project
hybridizing primers, 138
hydrophilic, 15
hydrophilic stretches, 166
hydrophobic, 15
hydrophobic regions, 166

• J •

identity, percentage of, 213
IMGT (International Immunogenetics database), 128
Improbizer motif-finding method, 302
in vitro experiments, 10
in vivo experiments, 10
The Institute for Genome Research (TIGR) Assembler, 154
bacterial genomes, 94–95
internal exons, finding in vertebrate genomic sequences, 149–151
internal repeats
composition, analyzing single DNA sequence, 142–144
pairwise comparisons, 237
International Immunogenetics database (IMGT), 128
International Union of Biochemistry and Molecular Biology (IUBMB), 126
International Union of Pure and Applied Chemistry (IUPAC) code
RNA sequences, analyzing, 21–22
tables listing, 11, 19
InterPro protein sequence analysis, 195, 412
InterProScan server, 183–185
introns
DNA sequences, retrieving, 51
gene density, 71
inverted repeats
described, 142
dot plot, 144
isoleucine, 11, 13
IUBMB (International Union of Biochemistry and Molecular Biology), 126
IUPAC (International Union of Pure and Applied Chemistry) code
RNA sequences, analyzing, 21–22
tables listing, 11, 19

• K •

Kalign
multiple sequence alignment, 301
server listed, 301
Kalignview package, 323
kb (1000 bp), 23
KEGG (Kyoto Encyclopedia of Genes and Genomes), 126, 412
keywords
EGFR, 118–119
GenBank entry, 74, 79, 81
Kimura, Motoo (neutralism, elaboration of), 375
Koonin, Eugene, 379
Kyte & Doolittle Scale, 171

• L •

Lalign
interpretation difficulties, 291
local alignments, 256–258
output, interpreting, 258–261
pairwise alignment, 263

Jalview
described, 313, 413
features, 318
obtaining, 323
phylogenetic tree, 401
saving alignment, 318–319
starting, 314–315
Java applet, Dotlet
downloading, 241–242
entering sequence in, 242–244
fine-tuning, 245–248
nucleic acids, analyzing with, 253–254
results, interpreting, 248–249
Java applet, Jalview
described, 313, 413
features, 318
obtaining, 323
phylogenetic tree, 401
saving alignment, 318–319
starting, 314–315
Journal of Virology, 34

Kalign
multiple sequence alignment, 301
server listed, 301
Kalignview package, 323
kb (1000 bp), 23
KEGG (Kyoto Encyclopedia of Genes and Genomes), 126, 412

keywords
EGFR, 118–119
GenBank entry, 74, 79, 81
Kimura, Motoo (neutralism, elaboration of), 375
Koonin, Eugene, 379
Kyte & Doolittle Scale, 171

Lalign
interpretation difficulties, 291
local alignments, 256–258
output, interpreting, 258–261
pairwise alignment, 263
lalnvie pairwise alignment analysis, 263
Lama tool, 324
Lasergene (DNASTAR), 154
lateral transfer, 377
leucine, 11, 13
licensing issues, 410
Lipid Bank, 125
Lipman, D.J. (FASTA program creator), 48
local alignments
benefits of using, 255
described, 238, 254
Lalign output, interpreting, 258–261
Lalign to find ten best, 256–258
methods, choosing, 255–256
locus
Entrez/Gene resource, NCBI server, 86–88
GenBank entry, 74, 81
name, 55
Logos tool
described, 413
editing package, 324
high-impact pictures, generating, 322–323
long words, counting in single DNA sequence, 140–141
loops, 23
low-complexity
regions in proteins, finding, 253
segments, 215
lysine, 11

M

macromolecules, 11
MAFFT
multiple sequence alignment, 301
server listed, 301
match details, Motif Scan, 192–193
match map, Motif Scan, 191–192
mature transcript (mRNA)
described, 53n
entry fields, 83
eukaryotes, 72–73
gene order formula, 82
mature transcript (mRNA), GenBank
eukaryotic
calling, 78–79
FEATURES section, 81–84
fetching, 80
gene sequence, 79
KEYWORD line, 79
keywords, 81
related, working with, 84–85
retrieving without accession numbers, 85–86
Mb (mega-bp), 23
McKusick, Victor (Online Mendelian Inheritance in Man database owner), 106
MCOFFEE tool, 287
Medline record, internal structure of, 37
MEME motif-finding method, 302
MEROPS database, 128
methionine, 11
Mfold software
described, 355–356
forcing interaction, 361–362
interpreting results, 359–361
obtaining, 413
sample, 356–359
miRNAs
described, 367–368
resource locator, 414
mismatches, 365
ModBase database, 116
modification, post-translational
described, 174–175
ORFs, 108
other tools, 180
output, understanding, 177–179
patterns, looking for, 175–177
short patterns, 179
species information, 179–180
weak patterns, eliminating, 180
weak signals, 180
molecular docking, 352
Motif Scan, 190–193
mRNA (mature transcript)
described, 53
entry fields, 83
eukaryotes, 72–73
gene order formula, 82
mRNA (mature transcript) entry, GenBank
eukaryotic
calling, 78–79
FEATURES section, 80–84
fetching, 80
gene sequence, 79
KEYWORD line, 79
keywords, 81
related, working with, 84–85
retrieving without accession numbers, 85–86
multiple sequence alignments
 ClustalW, 282–287, 300
 common ancestor, 266
 common ancestor, sequences without, 297–299
described, 265–266
DNA or protein sequences, 272
evolutionary constraints, revealing, 294–297
guidelines for selecting, 271
Internet resources, 299–302
interpreting, difficulties of, 291–292
method, choosing, 281
motif-finding methods, addresses listed, 301–302
MSF format, 306, 308
MUSCLE, crunching large datasets with, 291
 naming correctly, 275
 number, choosing right, 272–273
 online BLAST servers, 275–281
phylogenetic analysis, 380–382
protein alignment, recognizing good parts, 292–293
research, helping, 267–270
selecting correct sequence, 270
similarity versus new information, 273–274
Tcoffee, 287–291
when not to use, 267
multiple sequence alignments, editing and publishing. See also formatting
 beautifying tools, 325
 Boxshade utility, 319–321
described, 303–304
 editing packages, 323–324
 Logos, generating high-impact pictures with, 322–323
tools for extracting information, 324
Munich Bioinformatics Center, 158
MUSCLE
 crunching large datasets with, 291
 multiple sequence alignment, 301, 413
 server listed, 301
mutual ancestor, multiple sequence alignment, 266
mutual ancestor, sequences without conserved patterns, searching, 299
described, 297–298
Gibbs sampler, 298
Mview tool, 325

N (nucleotide)
DNA sequences, analyzing, 23
IUPAC code, 19
lost in reformatting, 312
RNA nucleotide sequence letters, 21
name
 alignments, 213
 author’s, searching PubMed by, 32–35
 EGFR, 112–114
 entry, 111
gene, 113
 multiple sequence alignment, 275
 protein, Swiss-Prot, 113
National Institute of Health (NIH) Center for Information Technology, 158
 database, 127
NCBI (National Center for Biotechnology Information)
 described, 131–132
 phylogenetic tree primer, 402
 primers resource locator, 414
 structure-structure similarity search service, 350
NCBI (National Center for Biotechnology Information) BLAST (Basic Local Alignment Search Tool). See also PSI-BLAST
 alignments, 213, 215–216
 biological questions, asking, 218–219
 complementary property, 20
described, 57–58, 199, 413
 DNA sequences, overview, 216–218
 EMBnet blastp, 207–209
 graphic display, 211–212
 hit list, 212–213
 homologues, 214
 hybridizing primers, 138
 NCBI blastp, 202–207
 output, 209–210, 224–225
 parameters, 216, 219–220, 223–224
 • N •

N (nucleotide)
DNA sequences, analyzing, 23
IUPAC code, 19
lost in reformatting, 312
RNA nucleotide sequence letters, 21
name
 alignments, 213
 author’s, searching PubMed by, 32–35
 EGFR, 112–114
 entry, 111
gene, 113
 multiple sequence alignment, 275
 protein, Swiss-Prot, 113
National Institute of Health (NIH) Center for Information Technology, 158
 database, 127
NCBI (National Center for Biotechnology Information)
 described, 131–132
 phylogenetic tree primer, 402
 primers resource locator, 414
 structure-structure similarity search service, 350
NCBI (National Center for Biotechnology Information) BLAST (Basic Local Alignment Search Tool). See also PSI-BLAST
 alignments, 213, 215–216
 biological questions, asking, 218–219
 complementary property, 20
described, 57–58, 199, 413
 DNA sequences, overview, 216–218
 EMBnet blastp, 207–209
 graphic display, 211–212
 hit list, 212–213
 homologues, 214
 hybridizing primers, 138
 NCBI blastp, 202–207
 output, 209–210, 224–225
 parameters, 216, 219–220, 223–224
 • N •

N (nucleotide)
DNA sequences, analyzing, 23
IUPAC code, 19
lost in reformatting, 312
RNA nucleotide sequence letters, 21
name
 alignments, 213
 author’s, searching PubMed by, 32–35
 EGFR, 112–114
 entry, 111
gene, 113
 multiple sequence alignment, 275
 protein, Swiss-Prot, 113
National Institute of Health (NIH) Center for Information Technology, 158
 database, 127
NCBI (National Center for Biotechnology Information)
 described, 131–132
 phylogenetic tree primer, 402
 primers resource locator, 414
 structure-structure similarity search service, 350
NCBI (National Center for Biotechnology Information) BLAST (Basic Local Alignment Search Tool). See also PSI-BLAST
 alignments, 213, 215–216
 biological questions, asking, 218–219
 complementary property, 20
described, 57–58, 199, 413
 DNA sequences, overview, 216–218
 EMBnet blastp, 207–209
 graphic display, 211–212
 hit list, 212–213
 homologues, 214
 hybridizing primers, 138
 NCBI blastp, 202–207
 output, 209–210, 224–225
 parameters, 216, 219–220, 223–224
 • N •
NCBI (continued)
protein domains, discovering and using, 230–231
protein sequences, handling, 201–202
results, 60–61
sequence masking, 220–223
servers, alternative, 231–233
starting, 58–60
NCBI (National Center for Biotechnology Information) CD (Conserved Domain) server
described, 187–190
protein sequence analysis, 195
NCBI (National Center for Biotechnology Information) PubMed database
author’s names, searching by, 32–35
described, 412
fields, searching by, 35–38
items not available in, 41
limits, searching using, 38–40
protein, finding by name, 30–31
queries, making the most of, 41
saving multiple summaries, 31–32
NCBI (National Center for Biotechnology Information) server Entrez/Gene resource
bacterial genomes, 92–94
described, 413
LOCUS, 86–88
viral genomes, 89–92
neo-Darwinism, 375
neutralism, 375
NIH (National Institute of Health) Center for Information Technology, 158
database, 127
nonoverlapping alignments, 258–259
NR database, 412
nsSNP analysis, 269
N-terminus, 14
Nuclear Receptor Signaling Atlas (Nursa), 128
Nucleic Acid Research Web site, 415
nucleotide (N)
DNA sequences, analyzing, 23
IUPAC code, 19
lost in reformatting, 312
RNA nucleotide sequence letters, 21
nucleotide sequence databases
genes and genomes, reading into, 70–73
historical perspective, 69–70
human genome, 97–98
NCBI gene-centric database, 86–88
mRNA sequence, GenBank eukaryotic mRNA entry
calling, 78–79
FEATURES section, 81–84
fetching, 80
gene sequence, 79
KEYWORD line, 79
keywords, 81
related, working with, 84–85
retrieving without accession numbers, 85–86
nucleotide sequence, GenBank prokaryotic entry
FEATURES table, 76–77
header, reading, 74–75
sample gene, fetching, 73–74
Sequence section, 77
nucleotide sequence whole-genome database
complete bacterial genomes, 92–94
complete viral genomes, 89–92
described, 88–89
DoE, 96–97
TIGR bacterial genomes, 94–95
number, accession
GenBank entry, 74, 81
Swiss-Prot, 111–112
number, multiple sequence alignment, 272–273
Nursa (Nuclear Receptor Signaling Atlas), 128

OMIM database, 412
1000 bp (kb), 23
online BLAST servers
characterized and uncharacterized, integrating, 275–276
ExPASy server, selecting sequences on, 276–279
multiple-alignment methods, Web addresses for, 276
Swiss-Prot server, gathering known collection of sequences from, 280–281
ontology, 117
Operational Taxonomic Units (OTUs), 399
Index

ORF (open reading frame)
described, 145
protein sequence, 53
UniProtKB/Swiss-Prot database, 107–108
ORGANISM, GenBank entry, 75, 81
origin of protein, epidermal growth factor receptor (EGFR), 112–114
orthologous genes, 373
orthologs, 377
OTUs (Operational Taxonomic Units), 399

pairing rules, 365
pairwise comparisons. See also dot plot
described, 235
local alignments over Internet, 254–261
method, choosing, 237–239
proteins and DNA, aligning, 262
sequences, choosing, 236–237
servers, listed, 262–263
pairwise projection, 381
Pal2nal pairwise alignment program, 263
palindromes, 20–21
parameters, BLAST, 216
parasite characters, warning about, 52
Parsimony package, 401
Pasteur Institute
protein alignment tool, 262
resource locator, 414
Pasteur Institute EMBOSS server
G+C content, establishing, 138–139
modules, 138–139
word frequency, computing, 140–141
PatScan, finding RNA patterns with, 363–367
pattern identification, 269
pattern matching, 12
patterns, looking for post-translational modifications, 175–177
PAUP phylogenetic tree package, 401
Phyl protein sequence analysis, 195
PCR (polymerase chain reaction)
analysis, 269
primer, 135–138
PDB (Protein Data Bank) site
described, 412
protein 3-D structures, 337–340, 351
protein families, 127, 412
Pearson, W.R. (FASTA program creator), 48
penalty, gap-extension
ClustalW parameter tuning, 286
described, 258
penalty, gap-opening
ClustalW parameter tuning, 286
described, 257
period (.), 292
PfamA domain collection, 182
phenylalanine, 11
Phred and Phrap sequence assembly tool, 267
Phred/Phrap/Consed, 154
Phylip software
computing tree, 387–395
multiple sequence alignment format, 307
obtaining, 413
phylogenetic tree, 371, 401
resource locator, 414
phylogenetic analysis. See also ClustalW
multiple sequence alignments; Phylip software; PhyML software
analysis application, 269
computing tree, 383–384
described, 373–374
displaying tree, 399–400
dNA or protein sequences, 374–375
gene tree or species tree, 377–379
generic resources, 401–402
jargon, 398–399
multiple sequence alignment, 380–382
online resources, 400–401
orthologous genes, 402
perfect set, creating, 379–380
purpose of, 372–373
PhyML software
computing tree, 396–398
obtaining, 413
phylogenetic tree, building, 371
PIR (Protein Information Resource)
ClustalW server, 300
cross-references, 116
described, 62–63
multiple sequence alignment format, 306
protein sequence analysis, 195
PKR (Protein Kinase Resource) database, 128
plot, dot. See also Dotlet
biological analysis, 249–254
described, 143–144, 238, 239–240
plot, dot (continued)
 inverted repeats, identifying, 144
 low-complexity regions in proteins, finding, 253
 programs, different types of, 240
 tandem repeats, identifying, 250–252
polymerase chain reaction (PCR)
 analysis, 269
 primer, 135–138
 positions, number of, 23
post-translational modification
 described, 174–175
 ORFs, 108
 other tools, 180
 output, understanding, 177–179
 patterns, looking for, 175–177
 short patterns, 179
 species information, 179–180
 weak patterns, eliminating, 180
 weak signals, 180
Pratt motif-finding method, 301
PRE parasite character, 52
prediction line (Pred), 332
predictions, importance of, 168
primary structure analysis
 coiled-coil regions, 174
 properties revealed by, 166
 “sliding windows” technique, 167–168
 transmembrane segments, 168–174
primary transcript, 53
Primer3, 136–137
PRINTs domain collection, 183
Procons
 multiple sequence alignment, 301
 server listed, 301
PRODOM domain collection, 183
profiles, Swiss-Prot, 118
programs. See also individual programs listed by name
 described, 412
 listed, 413
prokaryotes, genes and genomes, 70–72
prokaryotic entry, GenBank
 FEATURES table, 76–77
 header, reading, 74–75
 sample gene, fetching, 73–74
 Sequence section, 77
proline, 11
promoter, 72
PROSITE database
 described, 174–175
 other tools, 180
 output, understanding, 177–179
 patterns, looking for, 175–177
 short patterns, 179
 species information, 179–180
 weak patterns, eliminating, 180
 weak signals, 180
PROSITE-Profile domain collection, 182
Protal2dna pairwise alignment program, 263
protease, 165
protease digestions, 166
protein
 discovery, 145
 and DNA, aligning, 262
 family databases, 127–128
 finding by name, PubMed, 30–31
 name, Swiss-Prot, 113
Protein Data Bank (PDB) site
 described, 412
 protein 3-D structures, 337–340, 351
 protein families, 127, 412
protein domain, finding known
 CD server of NCBI, 187–190
 collection, choosing right, 182–183
 described, 180–181
 Internet tools, 194–195
 InterProScan results, interpreting, 185–187
 InterProScan server, 183–185
 Motif Scan, 190–193
 new domains, finding, 194
Protein Information Resource (PIR)
 ClustalW server, 300
 cross-references, 116
 described, 62–63
 multiple sequence alignment format, 306
 protein sequence analysis, 195
Protein Kinase Resource (PKR) database, 128
protein maturation, 108
protein sequence
 amino acids, 10–12
 chapters, topics covered by individual, 16–17
 codes for ambiguity or exceptional amino acids, 13
DNA coding regions, translating into, 24–25
history of sequence analysis, 12
reading, 13–14
3-D structures, 14–16
protein structure databases, 126–127
protein 3-D structures
additional structural features, predicting, 334–336
computer, folding in, 351
described, 329–330
guessing, 340–342
homology modeling, 351
interactions, predicting, 352
interactive exploration, 344–349
interplay between multiple alignments and structural analysis, 343–344
local segments, 330
in movement, looking at, 352
PDB structures, 350–352
from primary to, 336–337
retrieving and displaying from PDB site, 337–340
secondary structure, predicting, 330–334
sequence and structure, interactive analysis, 349–350
sequence/PDB structure relationship, interactive exploration, 344–349
similar shapes, finding proteins with, 350
protein-coding regions, finding for single DNA sequence
described, 145
gene parsing for eukaryotic genomes, 151
GeneMark, 148–149
GenomeScan, 151–153
internal exons, finding in vertebrate genomic sequences, 149–151
ORFing, 145–147
Protogene Web server, 262
ProtParam program
described, 161–163
extinction coefficient, 165
half-life, 165
instability, 165
molecular weight, 164–165
Protoscale results, interpreting, 170–171
Protoscale, running, 168–170
prss pairwise alignment analysis, 263
PSI-BLAST
errors, avoiding, 228–230
protein domains, discovering and using, 230–231
protein sequences, 226–228
servers, alternative, 231–233
PsiPred software, 413
PSSMs, building, 194
publishing multiple sequence alignments.
See also formatting
beautifying tools, 325
Boxshade utility, 319–321
described, 303–304
editing packages, 323–324
Logos, generating high-impact pictures with, 322–323
tools for extracting information, 324
PubMed database
author’s names, searching by, 32–35
described, 412
fields, searching by, 35–38
items not available in, 41
limits, searching using, 38–40
protein, finding by name, 30–31
queries, making the most of, 41
saving multiple summaries, 31–32
purine (R)
IUPAC code, 19
RNA nucelotide sequence letters, 21
pyrimidine (Y)
IUPAC code, 19
RNA nucelotide sequence letters, 21
pyrrolysine, 13

• Q •
query
PubMed, making the most of, 41
sequence, 203

• R •
R (purine)
IUPAC code, 19
RNA nucelotide sequence letters, 21
RALEE package, 324
random coils, 330
Rasmol software, 413
reading frames, 26
READSEQ sequence text converter, 310
REBASE database, 128, 134
references section
 EGFR, 114
 GenBank entry, 55, 75
repeats, internal
 composition, analyzing single DNA sequence, 142–144
 pairwise comparisons, 237
repeats, inverted
 described, 142
 dot plot, 144
repeats, tandem
 described, 142
 dot plot, 250–252
replicates, number of, 391
research, multiple sequence alignment, 267–270
RESID(r) database, 124–125
residue
 described, 12, 13
 Swiss-Prot, 121–122
resource locators, 414
restriction enzymes, 21
restriction map, computing and verifying, 134–135
reverse-complement, 144
Review package, 324
ribosomal RNA (rRNA), 369
Rickettsia conorii genome, 27–28
RNA. See also Mfold software
databases and genomes, searching, 362–367
 described, 353–354
generic resources, 370
miRNAs and siRNAs, 367–368
predicting, modeling, and drawing, 354
rRNA, 369
secondary structures, 355
small, non-coding, 369–370
sequence analysis, DNA
 computers, 12
 described, 17, 216–218
double helix, 18–20
IUPAC code, 19
nucleotide, 23
palindromes, 20–21
reading, 17–18
sequence fragments, assembling for single DNA sequence
 CAP3 documentation, 155–157
 machines, limitations of, 153
public software, managing large projects with, 154–155
sequence name, lost in reformatting, 312
sequence of protein, 14
Sequence Retrieval System (SRS), 185, 413
Roberts, Richard J. (Restriction Enzyme Database owner), 106
Robinson, Tara Rodden (Genetics For Dummies), 70
robustness, 409
rooted phylogenetic tree, 399
Rosen, Steve (Primer3 developer), 136
rRNA (ribosomal RNA), 369
same ancestor, multiple sequence alignment, 266
same ancestor, sequences without conserved patterns, searching, 299
described, 297–298
Gibbs sampler, 298
San Diego Supercomputer Center, 158
Sanger, Alfred, 17
scaffold sequence signatures,
 UniProtKB/Swiss-Prot database, 109–110
SCOP (Structural Classification Of Proteins), 127
screen capture, 248, 408
Seaview package, 323
security, Web-based servers, 406
SEGMENT, GenBank entry, 81
selenocysteine, 13
Selex multiple sequence alignment format, 307
SeqCheck sequence text converter, 310
RNA. See also Mfold software
databases and genomes, searching, 362–367
 described, 353–354
generic resources, 370
miRNAs and siRNAs, 367–368
predicting, modeling, and drawing, 354
rRNA, 369
secondary structures, 355
small, non-coding, 369–370
RNA sequences, analyzing
 DNA versus, 21
 IUPAC codes, 21–22
 nucleotide, 23
 sticky strands, 22–23
RNA World resource locator, 414
sequence section
EGFR, 123
GenBank entry, 55
GenBank prokaryotic entry, 77
sequence similarity, 268
sequence-identification numbers, 407
sequences, DNA, retrieving
introns and exons, 51
from protein sequences, 52–53
relevant to my protein, 53–56
Sequencher (Gene Codes), 154
sequencing human genome, 97–98
serine, 11
servers, online. See also individual servers
listed by name
advantages, 405
alignments, 408
borderline results, checking, 409
E-values, 408
fresh data, importance of, 409
licensing issues, 410
parameters, 407
recording sequence-identification numbers, 407
results, saving, 407–408
security of data, 406
software, installing your own, 410
unpublished methods, 409
version, server, and database version, 406
short patterns, 179
SIB (Swiss Institute of Bioinformatics), 105
signal peptide, 119
silencing RNAs (siRNAs), 367–368
similarity. See also BLAST
described, 160
importance of, 200–201
multiple sequence alignment, 273–274
single DNA sequence
entry points, additional, 157–158
importance, 129
PCR primer, 135–138
restriction map, computing and verifying, 134–135
skills, necessary, 130
UniVec matches, 133–134
vector sequences, removing, 130–133
single DNA sequence, analyzing composition
EMBOSS modules, 142
G+C content, 138–139
genome-specific repeats, identifying, 145
internal repeats, finding, 142–144
long words, counting, 140–141
words, counting, 139–140
single DNA sequence, assembling sequence fragments
CAP3 documentation, 155–157
machines, limitations of, 153
public software, managing large projects with, 154–155
single DNA sequence, finding protein-coding regions
described, 145
gene parsing for eukaryotic genomes, 151
GeneMark, 148–149
GenomeScan, 151–153
internal exons, finding in vertebrate genomic sequences, 149–151
ORFing, 145–147
single protein sequence
biochemistry using computer, 160–166
described, 159–160
siRNAs (silencing RNAs), 367–368
size, protein molecules, 15
Skaletsky, Helen (Primer3 developer), 136
slash marks, two (//), 77
“sliding windows” technique, 167–168
SMART domain collection, 183
Smith and Waterman (SSEARCH), 232
software. See also individual programs
listed by name
described, 412
listed, 413
source, GenBank entry, 74
speciation, 377
species information, 179–180
species tree, 377–379
specify patterns, 365
SRS (Sequence Retrieval System), 185, 413
SSEARCH, Smith and Waterman, 232
Staden Package, 154
standard genetic code, table of, 25–26
star (*), 292
stems, 23
sticky strands, 22–23
stochastic method, Gibbs sampler, 298
strands, extended, 330
Strasbourg ClustalW server, 300
structural bioinformatics, 15
Structural Classification Of Proteins (SCOP), 127
structural similarity, 268
structure prediction, 269
substitution matrix, 223, 257, 286
summaries, PubMed, 31–32
Swbic resource locator, 414
Swiss EMNet, 160
Swiss Institute of Bioinformatics (SIB), 105
Swiss-Model server, 127
Swiss-Prot database
accession number, 111–112
described, 412
domain, 120–121
gathering known collection of sequences from, 280–281
synonyms, Swiss-Prot, 113

• T •
T, IUPAC code, 19
T (thymine), 19
tandem domains, 252
tandem repeats
described, 142
dot plot, 250–252
target database, 203
taxonomy, Swiss-Prot, 113
tblastn, 201
tblastx, 217
tCoffee
phylogenetic tree, 400
server listed, 301
tCoffee multiple sequence alignment
ClustalW versus, 291
CORE, evaluating quality with, 290
described, 301, 413
EXPRESSO, combining sequences and structures with, 290
tools, 287
using, 287–290
tERIESIAS motif-finding method, 302
text sequences, 12
thermal cycler, 136
3'-terminus, 18

3-D protein structure
additional structural features, predicting, 334–336
computer, folding in, 351
described, 329–330
guessing, 340–342
homology modeling, 351
interactions, predicting, 352
interactive exploration, 344–349
interplay between multiple alignments and structural analysis, 343–344
local segments, 330
in movement, looking at, 352
patterns, identifiable, 178
PDB structures, 350–352
from primary to, 336–337
retrieving and displaying from PDB site, 337–340
sample, illustrated, 16
secondary structure, predicting, 330–334
sequence and structure, interactive analysis, 349–350
sequence/PDB structure relationship, interactive exploration, 344–349
sequences, analyzing, 14–16
similar shapes, finding proteins with, 350
threonine, 11
threshold value, 246
thymine (T), 19
TIGR (The Institute for Genome Research) Assembler, 154
bacterial genomes, 94–95
TIGRFAM domain collection, 183
TMHMM
described, 168
results, interpreting, 173–174
running, 171–173
top cursor, Dotlet, 247
topological domain, 120
TRanslation of European Molecular Biology Laboratory (TrEMBL) nucleotide sequences, 106
translocation, 109
transmembrane segment, protein
described, 120
predictions, importance of, 168
Protscale results, interpreting, 170–171
Index

Protscale, running, 168–170
TMHMM results, interpreting, 173–174
TMHMM, running, 171–173
Trees software, 413
TrEMBL (TRanslation of European Molecular Biology Laboratory) nucleotide sequences, 106
tRNAs, finding in genome, 363
tryptophan, 11
two sequences, comparing. See pairwise comparisons
type-1 human immunodeficiency virus (HIV-1), 89–92
tyrosine, 11

• U •
U (uracil), 21
UniProtKB/Swiss-Prot database accession numbers, 111–112 Comments, 114–116 Cross-References section, 116–118 described, 105–106 EGF receptor entry, deciphering, 110–111 Entry Name, 111 entry sections, 110 Features section, 119–123 final activities and destination for each protein (translocation), 109 folds and functions (scaffold sequence signatures), 109–110 Keywords, 118–119 linking to, 106–107 name and origin of protein, 112–114 ORFs, 107–108 References, 114 sequence, 123 UniVec matches, single DNA sequence, 133–134 Université Libre de Bruxelles, 158 University of Massachusetts Medical School, 135, 136 unpublished methods, 409 unrooted phylogenetic tree, 399 uppercase/lowercase, lost in reformatting, 312 uracil (U), 21

U.S. Department of Energy (DoE) whole-genome database, 96–97
USC pairwise alignment program, 263

• V •
valine, 11
vector sequences, removing single DNA sequence, 130–133
VERSION, GenBank entry, 74, 81

• W •
Washington University in St. Louis, 363 weak patterns, eliminating, 180
weak signals, 180
Web servers. See also individual servers listed by name
Web-based BLAST servers characterized and uncharacterized, integrating, 275–276
ExPASy server, selecting sequences on, 276–279
multiple-alignment methods, Web addresses for, 276
Swiss-Prot server, gathering known collection of sequences from, 280–281
whole-genome database complete bacterial genomes, 92–94 complete viral genomes, 89–92 described, 88–89
whole-genome database (continued)
 DoE, 96–97
 TIGR bacterial genomes, 94–95
windows, sliding
 described, 167–168
 dot plot versus, 239–240
words
 BLAST, 224
 counting in single DNA sequence, 139–140
 frequency, computing, 140–141
 WU-BLAST, 232
 WWW Signal Scan, 158

• X •

xenAliTwo pairwise alignment program, 263
xenologs, 377

• Y •

Y (pyrimidine)
 IUPAC code, 19
 RNA nucleotide sequence letters, 21

• Z •

Zhang Lab, 158
Zhang, Michael (MZEF developer), 150