Contents

Preface XIII
List of Contributors XV

1 Nanostructured Activated Carbons for Supercapacitors 1
Wentian Gu, Xinran Wang, and Gleb Yushin
1.1 Supercapacitors 1
1.2 Activated Carbon as Electrode for Supercapacitors 3
1.3 Synthesis of ACs 4
1.3.1 Precursors 4
1.3.2 Activation Method 11
1.3.2.1 Physical Activation 11
1.3.2.2 Chemical Activation 11
1.3.2.3 Electrochemical Activation 13
1.4 Various Forms of ACs as Supercapacitor Electrodes 13
1.4.1 Activated Carbon Powders 13
1.4.2 Activated Carbon Films and Monoliths 14
1.4.3 Activated Carbon Fibers 15
1.5 Key Factors Determining the Electrochemical Performance of AC-Based Supercapacitors 16
1.5.1 Pore Size and Pore Size Distribution 16
1.5.2 Pore Alignment 19
1.5.3 Surface Functionalization 20
1.5.4 Electrical Conductivity of the Electrode 21
1.5.5 Electrolyte Selection 22
1.5.6 Understandings of Ion Adsorption in Porous Structure 23
1.5.7 Quantum Capacitance of Carbon and Doping 26
1.6 Self-discharge of ACs-Based Supercapacitors 27
1.7 Summary 28
References 29

2 Nanocarbon Hybrids with Silicon, Sulfur, or Paper/Textile for High-Energy Lithium Ion Batteries 35
Nian Liu, Guangyuan Zheng, and Yi Cui
2. Nanocarbon/Silicon Hybrid Anodes

2.2.1 Nanocarbon@Silicon Structure
2.2.2 Silicon@Nanocarbon Structure
2.2.3 Silicon@Void@Nanocarbon Structure
2.2.4 Nanocarbon/Silicon Hierarchical Structure

3. Nanocarbon/Sulfur Hybrid Cathodes

3.3.1 0D Nanocarbon (Nanoporous Carbon)
3.3.2 1D Nanocarbon (Carbon Nanotubes and Nanofibers)
3.3.3 2D Nanocarbon (Graphene Oxide and Reduced Graphene Oxide)

3.4 Nanocarbon/Paper/Textile Hybrids as Conductive Substrates

3. Precursor-Controlled Synthesis of Nanocarbons for Lithium Ion Batteries

3.1 Introduction

3.2 Precursor-Controlled Synthesis of Nanocarbons

3.3 Nanocarbons in LIBs

3.3.1 Pure Nanocarbons as Anode in LIBs
3.3.2 Nanocarbon Composites as Anode in LIBs
3.3.2.1 Silicon-Nanocarbon Composites
3.3.2.2 Tin-Nanocarbon Composites
3.3.2.3 Metal Oxide-Nanocarbon Composites
3.3.3 Nanocarbon in Cathode of LIBs

3.4 Summary and Outlook

4. Nanocarbon/Metal Oxide Hybrids for Lithium Ion Batteries

4.1 Metal Oxides (MOs) for Lithium Ion Batteries

4.2 Carbon Nanocoating/MO Hybrids for LIBs

4.2.1 Manganese Oxides/Carbon Coating Hybrids
4.2.2 Iron Oxides/Carbon Coating Hybrids
4.2.3 Tin Oxides/Carbon Coating Hybrids
4.2.4 Other MOs/Carbon Coating Hybrids

4.3 CNFs/MO Hybrids and CNTs/MO Hybrids

4.3.1 CNFs/MO Hybrids
4.3.2 CNTs/MO Hybrids

4.4 Graphene/MO Hybrids
Contents
4.4.1 Cobalt Oxides/Graphene Hybrids
4.4.2 Iron Oxides/Graphene Hybrids
4.4.3 Manganese Oxides/Graphene Hybrids
4.4.4 Tin Oxides/Graphene Hybrids
4.4.5 Other MOs/Graphene Hybrids
4.5 Hierarchical Nanocarbon/MO Hybrids
4.5.1 Carbon Nanocoating/CNTs/MO Hybrids
4.5.2 Carbon Nanocoating/Graphene/MO Hybrids
4.5.3 CNFs/CNTs/Graphene/MO Hybrids
4.6 Summary and Perspectives
Acknowledgments
References

5 Graphene for Flexible Lithium-Ion Batteries: Development and Prospects 119
Lei Wen, Feng Li, Hong-Ze Luo, and Hui-Ming Cheng

5.1 Introduction 119
5.1.1 Development of Flexible Electronic Devices 119
5.1.2 Principle of LIBs 122
5.1.3 Current Status of Flexible LIBs 124
5.2 Types of Flexible LIBs 127
5.2.1 Definition of Flexible LIBs 127
5.2.2 Design and Fabrication of Bendable LIBs 128
5.2.3 Design and Fabrication of Stretchable LIBs 131
5.3 Current Status of Graphene-Based Electrodes for Bendable LIBs 136
5.3.1 Fabrication of Graphene 138
5.3.2 Graphene/Non-conductive Flexible Substrates 140
5.3.3 Graphene Films 143
5.3.4 Self-Standing Graphene Composites 146
5.3.5 Graphene Fibers 149
5.3.5.1 Wet-Spinning Process for Graphene Fibers 150
5.3.5.2 Wet-Spinning Process for Graphene Based Composite Fibers 152
5.4 Characterization of Graphene-Based Bendable Electrodes 155
5.4.1 Mechanical Properties of Flexible Electrodes 156
5.4.2 Mechanical Stability of Flexible Electrodes under Deformation 158
5.4.3 Static and Quasi-Dynamic Electrochemical Performance 159
5.4.4 Dynamic Electrochemical Performance 161
5.5 Prospects of Flexible LIBs 162
5.6 Summary and Perspective 169
Acknowledgment 169
References 169
6 Supercapatteries with Hybrids of Redox Active Polymers and Nanostructured Carbons 179
Anthony J. Stevenson, Denys G. Gromadskyi, Di Hu, Junghoon Chae, Li Guan, Linpo Yu, and George Z. Chen
6.1 Introduction 179
6.2 Electrochemical Capacitance 180
6.3 Supercapattery 183
6.4 Carbon Nanotubes and Redox Active Polymers 185
6.5 Carbon Nanotube-Polymer Hybrids 188
6.5.1 Synthesis of CNT and RAPs Hybrids 188
6.5.2 Performance of CNT/RAP Hybrids 192
6.6 Electrode and Cell Fabrication 193
6.7 Electrolytes and Separator 196
6.7.1 Electrolytes 197
6.7.2 Separator 199
6.8 Recycling of Materials 199
6.9 Conclusion 203
Abbreviations 204
References 204

7 Carbon-Based Supercapacitors Produced by the Activation of Graphene 211
Ziqi Tan, Guanxiong Chen, and Yanwu Zhu
7.1 Introduction 211
7.2 Supercapacitors Produced from activated graphene 215
7.2.1 Activated Graphene as Electrode Materials 215
7.2.2 Effects of Graphene Precursors before Activation 218
7.2.3 Optimization Based on Activated Graphene 220
7.3 Conclusion and Remarks 223
Acknowledgments 223
References 224

8 Supercapacitors Based on Graphene and Related Materials 227
Kothandam Gopalakrishnan, Achutharao Govindaraj, and C. N. R. Rao
8.1 Introduction 227
8.2 Characteristics of Supercapacitors 228
8.3 Activated Carbons 228
8.4 Carbon Nanotubes 231
8.5 Graphene-Based Supercapacitors 233
8.6 Graphene Micro-Supercapacitors 236
8.7 Nitrogen-Doped Graphene 239
8.8 Boron-Doped Graphene 242
8.9 Graphene Pseudocapacitors 243
8.10 Graphene-Conducting Polymer Composites 243
9 Self-Assembly of Graphene for Electrochemical Capacitors 253
Yiqing Sun and Gaoquan Shi
9.1 Introduction 253
9.2 The Chemistry of Chemically Modified Graphene 254
9.3 The Self-Assembly of CMGs into 2D Films 255
9.3.1 Vacuum-Filtration-Induced Self-Assembly 256
9.3.2 Evaporation-Induced Self-Assembly 258
9.3.3 Langmuir–Blodgett (LB) Technique 259
9.3.4 Layer-by-Layer (LBL) Assembly 261
9.4 Self-Assembling CMG Sheets into 2D Architectures 263
9.4.1 Template-Free Self-Assembly 264
9.4.1.1 Gelation of CMGs 265
9.4.2 Template Guided Self-Assembly 268
9.4.2.1 Soft Templates 268
9.4.2.2 Hard Templates 268
9.4.3 Ice Segregation Induced Self-Assembly 270
9.5 Self-Assembled Graphene Materials for ECs 271
9.6 Conclusions and Perspectives 274
References 275

10 Carbon Nanotube-Based Thin Films for Flexible Supercapacitors 279
Zhiqiang Niu, Lili Liu, Weiya Zhou, Xiaodong Chen, and Sishen Xie
10.1 Introduction 279
10.2 Solution-Processed CNT Films 281
10.3 Solution-Processed Composite CNT Films 285
10.4 Directly Synthesized SWCNT Films 289
10.5 The Composite Films Based on Directly Synthesized SWCNT Films 293
10.6 Conclusions and Outlook 295
References 296

11 Graphene and Porous Nanocarbon Materials for Supercapacitor Applications 301
Yanhong Lu and Yongsheng Chen
11.1 Introduction 301
11.2 Construction and Classification of Supercapacitors 303
11.2.1 Electrical Double Layer Capacitors (EDLCs) 304
11.2.2 Pseudo-Supercapacitors (PSCs) 306
11.2.3 Asymmetrical Supercapacitors (ASCs) 308
11.2.4 Micro-supercapacitors (MSCs) 309
11.3 A Performance Study of EDLCs Based on Nanocarbon Materials 311
11.3.1 Specific Surface Area 312
11.3.2 Pore Size Distribution 313
11.4 Porous Nanocarbon Materials for Supercapacitors 315
11.4.1 Activated Carbons (ACs) 317
11.4.2 Templated Carbons 318
11.4.3 Carbide-Derived Carbons (CDCs) 320
11.4.4 Graphene-Based Materials 321
Summary 328
Acknowledgments 328
References 328

12 Aligned Carbon Nanotubes and Their Hybrids for Supercapacitors 339
Hao Sun, Xuemei Sun, Zhibin Yang, and Huisheng Peng
12.1 Introduction 339
12.2 Synthesis of Aligned CNT Materials 339
12.3 Properties of Aligned CNT Materials 343
12.4 Planar Supercapacitors 344
12.5 Fiber-Shaped Supercapacitors 349
12.6 Summary and Outlook 356
References 357

13 Theoretic Insights into Porous Carbon-Based Supercapacitors 361
Nada Mehio, Sheng Dai, Jianzhong Wu, and De-en Jiang
13.1 Introduction 361
13.2 Classical Density Functional Theory 362
13.3 Ionic Liquid-Based Electric Double-Layer Capacitors 363
13.3.1 Differential Capacitance at the Planar IL/Electrode Interface 365
13.3.2 Interfacial Layering of Ionic Liquids 366
13.3.3 Oscillation of Ionic Liquid EDLC Capacitance with Variations in Pore Size 368
13.4 Organic Electrolyte Based Electric Double-Layer Capacitors 371
13.4.1 Effects of Pore Size on Capacitance for Organic Electrolyte EDLCs 371
13.4.2 Effects of Solvent Polarity on Capacitance 373
13.5 Summary and Outlook 375
Acknowledgments 376
References 376

14 Nanocarbon-Based Materials for Asymmetric Supercapacitors 379
Faxing Wang, Zheng Chang, Minxia Li, and Yuping Wu
14.1 Introduction 379
14.2 Activated Carbons for ASCs 382
14.2.1 Preparation Methods 382
14.2.2 Electrochemical Performance in Organic Electrolytes 383
14.2.3 Electrochemical Performance in Aqueous Electrolytes 385
14.3 Graphene for ASCs 389
14.3.1 Preparation Methods 389
14.3.2 Electrochemical Performance in Organic Electrolytes 390
14.3.3 Electrochemical Performance in Aqueous Electrolytes 390
14.4 Nanocarbon Composites for ASCs 392
14.4.1 Composites Based on AC 392
14.4.1.1 Preparation Methods 392
14.4.1.2 Electrochemical Performance in Organic Electrolytes 393
14.4.1.3 Electrochemical Performance in Aqueous Electrolytes 393
14.4.2 Composites Based on CNTs 395
14.4.2.1 Preparation Methods 395
14.4.2.2 Electrochemical Performance in Organic Electrolytes 396
14.4.2.3 Electrochemical Performance in Aqueous Electrolytes 398
14.4.3 Composites Based on Graphene 399
14.4.3.1 Preparation Methods 399
14.4.3.2 Electrochemical Performance in Organic Electrolytes 399
14.4.3.3 Electrochemical Performance in Aqueous Electrolytes 401
14.5 Other Carbon Materials and Their Composites for ACSs 403
14.5.1 Preparation Methods 403
14.5.2 Electrochemical Performance in Organic Electrolytes 405
14.5.3 Electrochemical Performance in Aqueous Electrolytes 406
14.6 All Solid State ASCs Based on Nanocarbon Materials 407
14.7 Summary and Prospects 409
Acknowledgments 410
References 410

15 Nanoporous Carbo\-ide-Derived Carbons as Electrode Materials in Electrochemical Double-Layer Capacitors 417
Martin Oschatz, Lars Borchardt, Guang-Ping Hao, and Stefan Kaskel
15.1 Introduction 417
15.2 Synthesis and Materials 418
15.2.1 Historical Perspective 418
15.2.2 Mechanisms of CDC Synthesis 419
15.2.2.1 Halogenation of Carbides 419
15.2.2.2 Kinetic and Thermodynamic Aspects 420
15.2.2.3 Conformal Carbide-to-Carbon Transformation 421
15.2.2.4 Surface Chemistry and Post-Synthesis Treatments 422
15.2.3 Pore Structure of CDCs 424
15.2.4 Hierarchical CDCs from Polymer Precursors 426
15.2.4.1 Templated CDCs 426
15.2.4.2 Template-Free CDCs from Polymer Precursors 429
15.2.4.3 CDC Fibers 429
15.2.5 CDC Nanoparticles 430
15.3 Application of CDCs in EDLCs 431
15.3.1 Role of Electrolyte System 432
15.3.2 Role of Particle Size and Shape 433
15.3.3 Role of Mesopore Structure 434
15.3.4 Role of Device Design 436
15.4 Electrosorption Mechanisms in CDC-Based EDLCs 437
15.4.1 Ion Desolvation in CDC Micropores 438
15.4.2 Nuclear Magnetic Resonance (NMR) Spectroscopy 438
15.4.3 Computational Modeling Studies 440
15.5 Conclusions and Outlook 442
Acknowledgments 443
References 443

Index 455