Index

a
absolute pressure 8
absolute zero 10
absorbent 71
absorption refrigeration system (ARS) 216, 649–667
ammonia-water 219
augmented 232
basics 218–219
biomass-powered 383–387
double-effect 227–229
electrochemical 231–232
performance evaluation 243–245
single-effect 226–227
solar-powered 358–363
steam ejector recompression 230–231
three-fluid 224–225
water–lithium bromide 225–229
accumulator 177
acid rain 631
actual system 29
adiabatic process 30
adiabatic saturation process 51, 52
air conditioning 40, 46
air purger 205, 206
air purging 206
air-standard refrigeration 210
Albedo effect 635
Amagat model 34
atmospheric pollutants 635, 636
atmospheric pressure 7
autocascading 268

b
balance point 152
batch-type freeze-dryers 622–624
belt-type steam blancher 581
biomass-based absorption refrigeration 383–387
blanching 580–582
block ice 613–614
boundary layer 519
Boyle’s law 32
brine 79, 111, 166, 335, 349, 613, 623
capillary tube 174
Carnot cycle 38
Carnot heat engine 24
cascade refrigeration 268
Charles’ law 33
chilling injury 481
chlorofluorocarbons (CFC) 77
Clausius statement 12
Clean Air Act 94
Cleland and Earle’s model 594–595
coefficients of performance (COP) 193
cogeneration system 387–393
cold storage
 chilling injury 481
dehumidification 483
design and construction 485–490
design and operational factors 480
ergy-efficient cold store 492–494
humidification 482
cold storage (contd.)
 humidity control 482
 optimum air movement 483
 optimum temperature 481–482
 photovoltaic-powered cold store 493–496
 prefabricated panel cold-storage plant 484–485
 refrigeration loads calculation 490–492
 relative humidity 482
 sanitation 483
 storage operation 480
 stowage 483
 thermal management aspects 483
 water vapor condensation on product 483
 cold-wall-type tunnel forced-air cooling 461–462
 column ozone 83
 compressibility chart 32
 compression 190
 compressor 37, 132
 capacity 149
 capacity control 151
 centrifugal 144
 compression ratio 149
 displacement 132, 137
 dynamic 132, 144
 efficiency 150
 energy analysis 211
 exergy analysis 211
 expectation 143
 hermetic 133
 isentropic efficiency 150
 open 136
 performance 151
 reciprocating 144
 rotary 143
 screw 140
 scroll 142
 selection criteria 132
 semi-hermetic 135
 turbo 112
 vane 138
 condensation 159, 190
 condenser 37, 156
 air-cooled 157
 energy analysis 160
 evaporative 158
 exergy analysis 160
 water-cooled 157
 conduction heat transfer 422
 contact belt tunnel freezer 603, 604
 continuity equation 52, 147
 continuous-type freeze-dryers 624–625
 controlled atmosphere storage (CAS)
 advantages 497–499
 for apples 496, 497
 common specifications 498
 controlled atmosphere 503
 controlled modified atmosphere systems 501
 controlled ventilation 503
 gas storage 503
 MAP 503–505
 membrane separation systems 502
 modified atmosphere cooling 505
 packaging 503
 pressure swing absorption systems 502
 PRISM Alpha Membrane Separator 499, 500
 quality 498
 ripening and waxing 500
 storage life 498, 499
 controlled modified atmosphere systems 501
 cooling heat-transfer parameters
 Dincer number 557–560
 effective heat-transfer coefficient 540, 542–547
 effective Nusselt–Reynolds correlations 555–557
 heat-transfer coefficients 547–555
 specific heat 533–536
 thermal conductivity 535–538
 thermal diffusivity 538–541, 547–555
 cooling process parameters
 analysis of 524–529
 cooling coefficient 522
 half cooling time 523
 lag factor 523
 seven-eighths cooling time 523
 transient heat transfer 522
 cooling tower 159
cryogenic freezers 609–612
cryogenics 479
crystallization 229, 578–579
cycle 17
cyclic devices 36
cylinder 28

d
Dalton model 34
dead state 14
decrease of exergy principle 10
defrost 179
defrosting 167, 204, 489
degree of saturation 51
dehumidification 53
dehydration losses 579–580
density 3
dew point temperature 50
Dincer number 557–560
Dincer’s 3S concept 638, 639
Dincer’s six pillars 638, 639
direct expansion system 346
distributed system 347
Dobson unit 83
double-spray blancher 581
drag thru doly tunnel freezer 603–604
drain tube 205
drier 177
dry air 50
drying system 632

effective freezing time 591
effective Nusselt–Reynolds correlations 555–557
ejector 312
electronic cooling 406, 407, 418
emissivity 542
energy 29
 analysis 147, 192, 211, 221
 efficiency 23
 recovery 433
 transfer 29
energy coefficient (EC) 449–450
energy efficiency program 638
energy-efficient cold store 492–494
enthalpy 14, 577
entropy 28
entropy equation 33
entropy generation 12, 17, 18, 148, 161, 168, 175, 196, 315–317
environmental impact 73, 637
Euler’s equation 55
evaporation 190
evaporative cooling 401, 475–476
evaporators 165
 air and gas cooler 166
 dry cooler 166
 energy analysis 167
 exergy analysis 167
 floadeed cooler 166
 liquid cooler 165
exergy 13
 analysis 13, 147, 195, 239
 balance 18
 destruction 43
 efficiency 37, 42
 expansion 166, 191

f
first law of thermodynamics (FLT) 10
flake ice 614
flat product freezer 608–610
flow work 30
fluid flow 29
food deterioration 442–443
food freezing 358
 blanching 580–582
 control system 612–613
 crystallization 578–579
 direct-contact freezing 573
 enthalpy 577
 enzymatic reactions 575–576
 equipment 598–613
 freeze-drying 616–625
 freezing point 479, 574, 588–589
 freezing rate 589–590
 freezing temperatures 575
 freezing time 590–598
 of fruits 586, 587
 goal of 574
 ice making 613–615
 indirect-contact freezing 573
food freezing (contd.)
 latent heat of crystallization 575
 microbiological activities 576
 moisture migration 579
 packaging 582
 phase change stage 585
 precooling stage 585
 pretreatment procedures 588
 quality 582–584
 quick freezing 479, 480, 577
 sensible heat 575
 slow freezing 479, 480
 storage period 479
 tempering stage 585
 textural changes 585
 thawing 615–616
 of vegetables 586, 587
 weight loss 579–580
 food freezing systems 358
 food preservation methods 443–444
 food quality 444–445
 forced air cooling/wet pressure cooling
 advantages 456
 air channel dimensions 466, 467
 box/tray and stacking design 460–462
 cold-wall-type tunnel forced-air cooling
 461–462
 description 448
 disadvantages 456
 engineering/economic model 468–469
 evaporator units 466
 fan control 466
 forced-air precooling room 457, 458
 heat exchangers 457
 humidity control 456
 humidity management 468
 ice-bank forced-air cooling system
 464–465
 one cool room 459
 portable forced-air precooling room
 457, 458
 products 456
 room cooling 464
 serpentine cooling 464
 single-pallet forced-air cooling 464
 small-scale forced-air cooling system
 457
 temperature measurements 467
 thermal efficiency 466
 thermal management 467–468
 tunnel cooling 459–460
 two cool rooms 458
 venting for boxes and trays 460
 with winter coldness 465
 forced convection 557
 Fourier–Reynolds correlations 529–533
 Fourier’s law 422
 freeze-drying
 advantages 617
 atmospheric freeze-drying 625
 batch-type freeze-dryers 622–624
 continuous-type freeze-dryers 624–625
 disadvantages 617
 freeze-dried foods characteristics 617
 freeze-drying times 619–620
 microwave and dielectric freeze-dryers
 625
 operation principles 617–619
 freezing 165
 freezing time, food products
 Cleland and Earle’s model 594–595
 effective freezing time 591
 Mannapperuma et al.’s model 595–597
 Mellor’s model 592, 598
 nominal freezing time 591
 Pham’s model 593–594
 Plank’s model 592, 597–598

 g
 gas constant 31
 gas liquefaction 268
 gauge 7
 geothermal-energy-based
 vapor-compression refrigeration
 375–379
 global climate change 89
 global warming 631
 global warming potential 93
 greenhouse effect 89, 635–637
 greenization 639–641

 h
 halocarbons 204
 heat generation 515–518
heating process 53
heat pipe 399, 400
applications 403
arrangement 421
capillary structure 414
component 408
container 410
cooler 404
cryogenic 408
dehumidifier 430
design 424
electronic cooling 406
energy recovery 433
gravity aided orientation 419
against gravity orientation 420
heat exchanger cooler 404
heat transfer limitation 428
horizontal orientation 419
HVAC 429
insulated water cooler 404
manufacture 424
micro 408
operation 417
performance 421
thermal conductivity 426
thermal resistance 423
type 407
use 403
wick 414
working fluid 411
heat transfer 29–30
coefficient 528, 542–550, 595
conduction 422
convection 488
radiation 488
humidification 53, 482
humidity ratio 50
lyophilization see freeze-drying
hydrocooling 449
advantages 450
artificial ice 453–454
compacted snow 455
description 448
disadvantages 450
ice/ice-slush cooling 453
immersion-type hydrocooling system 451, 452
large-scale hydrocooling system 452
natural ice 454
natural snow 455
schematic diagram 451
hydropower-based vapor-compression refrigeration 371–375
hydrovacuum cooling 448, 475

i
ice-bank forced-air cooling system 464–465
ice making
advantages 613
block ice 613–614
flake ice 614
plate ice 615
shell ice 614
slush, slurry or binary ice 613
tube/cylindrical ice 614
ideal gas 30
immersing cryogenic freezers 611–612
impingement jet freezers 608, 610
incompressible substances 28
industrial ice 613
insulation 49
internal energy 28, 29
irreversibility 15
isomers 78

k
Kelvin–Planck statement 12

l
laminar flow 433
latent heat 27
latent heat of fusion 27
length 2
lyophilization see freeze-drying

m
magnetic refrigeration 337
magnetocaloric effect 337
Mannapperuma et al.’s model 595–597
manometer 8
mass 2
mass flow rate 3
mass transfer 421, 516
Mcleod gauge 9
Index

mechanical refrigeration 128
Mellor’s model 592, 598
membrane separation systems 502
mercury U-tube manometer 8
microwave and dielectric freeze-dryers 625
milk, precooling/chilling 477–479
modified atmosphere cooling 505
modified atmosphere packaging (MAP) 503–505
modular tunnel freezers 601–602
moist air 50
moisture loss/water loss see transpiration
moisture migration 579
mole 2
Montreal protocol 88
multipass tunnel freezers 602–603
multistage cascade refrigeration 262
multistage refrigeration 262

n
natural convection 225, 418, 488
natural gas liquefaction 195
Newton’s law of cooling 540
nominal freezing time 591

O
ocean thermal energy conversion
(OTEC)-based vapor-compression refrigeration 379–383
oil separator 178
ozone 83
ozone depletion potential 85
ozone layer 82, 83

p
packaged spiral freezer 605–606
packaged tray freezers 608, 609
packaged tunnel freezers 600–601
package icing/contact icing 448
Pascal 6
Pham’s model 593–594
phase 30
photovoltaic-powered cold store 493–496
piezoelectric 9
Plank’s model 592, 597–598
plate (tray) freezers 606–608
plate ice 615
plunger gauge 8
power 30
precooling/chilling
definition 446
energy coefficient 449–450
evaporative cooling 475–476
forced air cooling/wet pressure cooling 448, 456–469
goal of 446
hydaircooling 469–471
hydrocooling 448–455
hydrovacuum cooling 448, 475
ice cooling 476
method selection criteria 449
of milk 477–479
package icing/contact icing 448
product life 447
recommended methods 477
room cooling 448, 464
vacuum cooling 448, 471–475
prefabricated panel cold-storage plant 484–485
pressure 6
absolute pressure 8
atmospheric pressure 7
barometric pressure 7
pressure gauge 8
pressure swing absorption systems 502
process 16
isentropic process 29
isobaric process 16
isochoric process 16
isothermal process 16
polytropic process 34
refrigeration process 16
psychrometric chart 53
adiabatic saturation 51, 52
balance equation 52
degree of saturation 51
dew point 50
dry air 50
dry bulb 51
humidity ratio 50
HVAC 49
moist air 50
relative humidity 50
saturated air 50
wet bulb 51
psychrometrics 49
definitions 50
pure substance 25

\[q\]
quality 27
quantity 2
quick freezing 479, 480, 577

\[r\]
real gas 25
receiver 178
reefer technology 507
refrigerant 71
air 75
alternative 94
ammonia 74, 110
azeotropic mixture 75
carbon dioxide 75, 113
CFC 71
classification 72
coding 76
combination 80
halocarbon 72
hydrocarbon 73
inorganic 74
lubricating oil 120
nonazeotropic mixture 76
prefix 76
propane 111
property 116
R-123 105
R-134a 103
selection 229
refrigerated semitrailers 507
refrigerated transport
air transport 515
mode of transportation 514
packaging 508–509
quality aspects of products 507–508
recommended transit and storage procedures 514
reefer technology 507
refrigerated semitrailers 507
sea and land transport 506, 515
temperature control 511–513
transport storage 509–511
refrigeration 38, 131
absorption 216
acid rain 631
air-standard 210
ARSs 649–667
Carnot 38
cascade 191, 262
component 136
cycle 132, 135
Dincer’s 3S concept 638, 639
Dincer’s six pillars 638, 639
ejector 312
environmental concerns 633–637
global warming 631
greenization 639–641
history 132
intercooler 263–264
metal hydride 334
multistage 262
steam jet 311
stratospheric ozone depletion 631
system 261
thermoacoustic 332
thermoelectric 328
twin 209
VCRSs 649–667
refrigerator 36
relative humidity 50
renewable energy-based integrated system 387–393
reversed Carnot cycle 38
reversibility 15
reversible work 15
Reynolds number 530
room cooling 448, 464

\[s\]
sanitation 483
saturated air 50
saturated vapour 16
secondary loop system 348
secondary refrigerant 79
second law efficiency 42
second law of thermodynamics (SLT) 12
sensible heat 27
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensory tests</td>
<td>583</td>
</tr>
<tr>
<td>serpentine cooling</td>
<td>464</td>
</tr>
<tr>
<td>shell ice</td>
<td>614</td>
</tr>
<tr>
<td>single-pallet forced-air cooling</td>
<td>464</td>
</tr>
<tr>
<td>site-built spiral freezer</td>
<td>606, 607</td>
</tr>
<tr>
<td>slow freezing</td>
<td>479, 480</td>
</tr>
<tr>
<td>slush, slurry or binary ice</td>
<td>613</td>
</tr>
<tr>
<td>solar ARSs</td>
<td></td>
</tr>
<tr>
<td>advantages</td>
<td>359</td>
</tr>
<tr>
<td>energetic and exergetic COPs</td>
<td>363</td>
</tr>
<tr>
<td>exergy destruction</td>
<td>363</td>
</tr>
<tr>
<td>lithium bromide-water absorption-refrigerant working fluids</td>
<td>360</td>
</tr>
<tr>
<td>principle of operation</td>
<td>359</td>
</tr>
<tr>
<td>rate of cooling</td>
<td>363</td>
</tr>
<tr>
<td>schematic diagram</td>
<td>360</td>
</tr>
<tr>
<td>solar collector area</td>
<td>363</td>
</tr>
<tr>
<td>solar energy input</td>
<td>363</td>
</tr>
<tr>
<td>state point properties</td>
<td>361</td>
</tr>
<tr>
<td>thermodynamic balance equations</td>
<td>361–362</td>
</tr>
<tr>
<td>solar PV-based vapor-compression refrigeration</td>
<td>364–367</td>
</tr>
<tr>
<td>specific enthalpy</td>
<td>28</td>
</tr>
<tr>
<td>specific entropy</td>
<td>28</td>
</tr>
<tr>
<td>specific heat</td>
<td>27</td>
</tr>
<tr>
<td>specific heat ratio</td>
<td>33</td>
</tr>
<tr>
<td>specific internal energy</td>
<td>28</td>
</tr>
<tr>
<td>specific volume</td>
<td>3</td>
</tr>
<tr>
<td>spiral freezers</td>
<td></td>
</tr>
<tr>
<td>packaged spiral freezer</td>
<td>605–606</td>
</tr>
<tr>
<td>site-built spiral freezer</td>
<td>606, 607</td>
</tr>
<tr>
<td>state</td>
<td>25–26</td>
</tr>
<tr>
<td>change</td>
<td>25</td>
</tr>
<tr>
<td>steady flow process</td>
<td>11</td>
</tr>
<tr>
<td>steam jet refrigeration</td>
<td>311</td>
</tr>
<tr>
<td>storing air</td>
<td>32</td>
</tr>
<tr>
<td>stowage</td>
<td>483</td>
</tr>
<tr>
<td>strain</td>
<td>9</td>
</tr>
<tr>
<td>strainer</td>
<td>179</td>
</tr>
<tr>
<td>stratosphere</td>
<td>83</td>
</tr>
<tr>
<td>stratospheric ozone depletion</td>
<td>84, 631</td>
</tr>
<tr>
<td>stream</td>
<td>54</td>
</tr>
<tr>
<td>subcooling</td>
<td>203</td>
</tr>
<tr>
<td>sublimation</td>
<td>26</td>
</tr>
<tr>
<td>substance</td>
<td>25</td>
</tr>
<tr>
<td>suction line</td>
<td>191</td>
</tr>
<tr>
<td>superheated vapor</td>
<td>27</td>
</tr>
<tr>
<td>superheating</td>
<td>201</td>
</tr>
<tr>
<td>supermarket refrigeration</td>
<td>345</td>
</tr>
<tr>
<td>sustainable development</td>
<td></td>
</tr>
<tr>
<td>categories of</td>
<td>642, 643</td>
</tr>
<tr>
<td>definition</td>
<td>642</td>
</tr>
<tr>
<td>energy and</td>
<td>643–645</td>
</tr>
<tr>
<td>exergy</td>
<td>645–646</td>
</tr>
<tr>
<td>HVAC&R system</td>
<td>646–648</td>
</tr>
<tr>
<td>indicators</td>
<td>643, 644</td>
</tr>
<tr>
<td>system</td>
<td>9</td>
</tr>
<tr>
<td>t</td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td>4, 50</td>
</tr>
<tr>
<td>dew point</td>
<td>50</td>
</tr>
<tr>
<td>dry-bulb</td>
<td>51</td>
</tr>
<tr>
<td>wet-bulb</td>
<td>51</td>
</tr>
<tr>
<td>thawing</td>
<td>615–616</td>
</tr>
<tr>
<td>thermal conductivity</td>
<td>427, 535–538</td>
</tr>
<tr>
<td>thermal diffusivity</td>
<td>538</td>
</tr>
<tr>
<td>thermal efficiency</td>
<td>24</td>
</tr>
<tr>
<td>thermal resistance</td>
<td>330, 407, 422–424, 426</td>
</tr>
<tr>
<td>thermistor</td>
<td>5</td>
</tr>
<tr>
<td>thermoacoustic refrigeration</td>
<td>332</td>
</tr>
<tr>
<td>thermocouple</td>
<td>5</td>
</tr>
<tr>
<td>thermodynamic equilibrium</td>
<td>31</td>
</tr>
<tr>
<td>thermodynamic property</td>
<td>16</td>
</tr>
<tr>
<td>extensive properties</td>
<td>16</td>
</tr>
<tr>
<td>intensive properties</td>
<td>16</td>
</tr>
<tr>
<td>thermodynamics</td>
<td>2, 10</td>
</tr>
<tr>
<td>first law</td>
<td>10</td>
</tr>
<tr>
<td>second law</td>
<td>12</td>
</tr>
<tr>
<td>thermodynamic system</td>
<td>9</td>
</tr>
<tr>
<td>closed system</td>
<td>9</td>
</tr>
<tr>
<td>isolated system</td>
<td>10</td>
</tr>
<tr>
<td>open system</td>
<td>9</td>
</tr>
<tr>
<td>thermodynamic table</td>
<td>30</td>
</tr>
<tr>
<td>steam tables</td>
<td>30</td>
</tr>
<tr>
<td>vapour tables</td>
<td>30</td>
</tr>
<tr>
<td>thermoelectric refrigeration</td>
<td>328</td>
</tr>
<tr>
<td>COP</td>
<td>330</td>
</tr>
<tr>
<td>thermometer</td>
<td>4</td>
</tr>
<tr>
<td>throttling device</td>
<td>172</td>
</tr>
<tr>
<td>capillary tube</td>
<td>174</td>
</tr>
<tr>
<td>constant pressure expansion valve</td>
<td>173</td>
</tr>
<tr>
<td>energy analysis</td>
<td>211</td>
</tr>
</tbody>
</table>
exergy analysis 211
float valve 173
thermostatic expansion valve 172
time 2
transpiration
 affecting factors 519, 521
 shrinkage 521–522
 transpiration coefficient 518–520
 transpiration rate 518–519
triple point 26
trolley freezers 607, 608
troposphere 83
tube/cylindrical ice 614
tunnel cooling 459–460
tunnel cryogenic freezers 612
tunnel freezers
 contact belt tunnel freezer 603, 604
 drag thru dry tunnel freezer 603–604
 modular tunnel freezers 601–602
 multipass tunnel freezers 602–603
 packaged tunnel freezers 600–601

U
units 2–9

V
vacuum 8
vacuum cooling
 advantages 472, 474
 ammonia refrigeration 473, 474
 centrifugal 472
 cooling times 471
 description 448
 disadvantages 474
 product temperature, affecting factors 472
reciprocating 472
rotary 472
steam ejector 472
trailer mounted mobile vacuum cooler 473, 474
valve 173
 check 179
 constant pressure expansion valve 173
 float valve 173
 solenoid 179
 thermostatic expansion 172
vapor 27
 quality 27
 state 27
vapor-compression refrigeration systems (VCRSs) 649–667
 geothermal-powered 375–379
 hydropowered 371–375
 OTEC powered 379–383
 solar-powered 364–367
 wind-powered 368–371
viscosity 121
 dynamic 120
 kinematic 531, 557
volumetric flow rate 3

W
wall 461
wind-energy-based vapor-compression refrigeration 368–371
work 30
 flow 30
 interactions 30
working fluid 37, 218, 333