Index

Adsorbates, 248, 300, 316, 343–51
Adsorption
 of atoms, 110
 of hydrogen, 115
 on metal, 114
 of Si, 112
Airy functions, 257, 269
AlGaN, 249, 264–74, 290–291
Aluminum nitride (AlN), 249–55, 273–6, 291, 317
Annealing, 208–12, 217–23, 235, 296, 318–19, 327, 361
Anode, 239
 ITO, 300–301
 metal, 328, 331
 molybdenum wire, 336
Anodic etching. See Electrochemical etching
Anomalous electron transport, 422
Applications
 electron beam lithography, 227
 electron microscopy, 227, 246
 flat panel type displays, 227, 314, 361
 vacuum microwave devices, 227, 314
 X-ray tubes, 227, 246, 314, 361
Arc(s), 248–9, 254, 268, 329–30, 341–6
Arcing. See Arc(s)
Atomic force microscopy (AFM), 208–9, 213, 259, 267, 270, 329
Auger profiling spectra, 215–16
Ballistic, 229, 237, 257–8, 273
 quasiballistic, 233–4
Ballistic resonance oscillation, 391
Band bending, 87, 247, 250–251, 256, 261, 264–9, 273, 289, 317, 323, 328
Band bending at the interface, 116
Barrier(s), 211, 248, 267–72, 299
 into, 12
 for charge carrier emission, 96
 double, 28
 of electron affinity, 129
 of the emitter, 130
 energy, 3
 height, 99, 124
 at high bias, 122
 inside, 6
 layers, 150
 maximum, 99
 near the interface, 97
 penetration, 124
 potential, 4, 109
 profile, 105
 rectangular, 20
 region, 154
 single, 32
 structure, 119
 at the surfaces, 128
 thickness of, 37, 125
 through the, 20
 trapezoidal, 38
Barrier(s) (continued)
 trapping in, 3
 triangular, 3
 width, 104
Bessel functions, 282
Boron nitride (BN), 291–3
Breakdown, 220, 228, 354
 field, 247
 of layer, 211
Carbon emitter(s), 314
 a-C:H:N films, 330, 336
 amorphous carbon (a-C), 326–7
 arrays, 321–3, 339, 354–6
 conductive nanochannels, 336–40
 hydrogenated amorphous carbon
 (a-C:H), 326–9
 nanocarbon, 352, 358, 360
 nanochannels, 336–40
 nanostructured, 324–6, 342
 partially graphite-like (PGL) films, 329
 sp2-bonded carbon, 319, 329
 sp3-bonded carbon, 314, 326–9
 ta-C:H, 327
 ta-C:N films, 330
 tetrahedral amorphous carbon ta-C films,
 314, 342
Carbon nanotubes (CNTs), 173, 201, 222,
 227, 271, 314, 340–52, 357, 358,
 376, 437
Cathode. See also Field emitter
cold, 397
 contact, 182
 device, 194
 potential, 175
tip, 182
Cesium (Cs) on EFE, 318, 342
Charge
 created, 24
 negative, 25
 negative oxide, 27
 positive oxide, 27
 trapped, 24
Chemical-vapor deposition (CVD), 222–3,
 227, 288, 315, 341, 352–9
 plasma-enhanced, 217, 220, 291, 334,
 340
Child-Langmuir law, 344
Coating(s)
 BN, 291
diamond, 320
diamond like carbon (DLC), 314, 333–4,
 339
dielectric layer, 247, 325–8
 of the emitter, 108
 with film, 108
layer, 108
 of metal, 108
 multilayer, 201, 207
 nanocomposite film, 208–11, 215–17,
 326–7
 SiO$_2$, 201–2, 217–40, 326, 355
 SiO$_x$(Si) film, 201–11, 217–21, 327
Contact printing method, 296–7
Current
 from the bulk substrate, 154
 charge trapping induced, 27
density, 134
electric, 22
 between the electrodes, 160
electron, 23
 of electron tunneling, 154
 flow, 140
 Fowler-Nordheim, 43
growth, 140
 level, 147
 from the object, 161
 peaks, 136
 probability, 22
 resonant maxima, 148
 in three-dimensional system, 137
 through barrier structures, 119
 through double barrier structure, 119
 through one barrier, 119
 through the discrete states, 141
 through the emitter, 127
 through the semiconductor tip, 128
transient, 27
 transport mechanism, 119
 tunneling, 25
 in two-dimensional system, 139
 in two-terminal devices, 159
 from the vacuum into the well, 155
from wide bandgap semiconductor, 128
Current-voltage (I-V) characteristics. See I-V characteristics

Densities of carriers. See Densities of electrons
Densities of electrons, 257, 280, 285, 287
Density of states, 48, 263, 280–281, 284
Diamond, 249, 273, 314–24
microcrystalline, 322
crystal, 320, 322, 328
nanodiamond films (NDFs), 320–3
polycrystalline, 318–20
Diamond-like carbon (DLC), 204, 217–18, 314–15, 324–40
Dipole(s)
barrier, 106
layer, 106
momentum, 104
potential, 110
term, 104
Dynatron, 397

Effective barrier. See Effective work function
Effective drift velocity, 279
Effective mass
approximation, 48
of electrons, 80
equation, 48
Effective work function, 206, 268–71, 320, 339
Eigenvalues of energy, 282–3
Electrical conditioning, 217–21, 255, 268, 336–40, 343
Electrochemical etching, 202–5, 217, 232, 234, 288, 290, 300
Electron bunches, 238, 305
Electron concentration
for 2D structures, 71
for 3D structures, 67
Electron energy distribution
of emitted electrons, 172
spectra, 177
Electron field emission (EFE)
under Coulomb blockade, 167
from multilayer nanostructures and nanoparticles, 142
from nanostructures, 142
parameters, 119
from semiconductors, 127
Electronic state(s) in a nanoparticles, 150, 159
Electron sources. See Field emitter
Electrophoresis deposition (EPD), 321
Emission
cold, 22
electron field, 3
Fowler-Nordheim, 43
thermionic, 23
Emission site density (ESD), 314
Energy band diagram
of DLC, 329, 332
GaN rod, 304
resonant tunneling structure, 206, 265
semiconductor-vacuum, 316
wide bandgap semiconductor, 248
Energy band reconstruction, 282–4
Energy diagram, 380
Energy dispersive spectroscopy (EDS) spectrum, 222
Energy separation, 206, 208
Energy spectrum
of electrons, 57
in the film, 82
of quantum wire, 63
Exchange-correlation potential, 103
Fermi distribution function, 249
Field electron energy distributions (FEEDs), 251–3, 324, 344
Field electron microscopy (FEM), 325–6
Field electron spectroscopy (FES), 318, 325, 330
Field emission(s)
current saturation, 222, 224, 298, 342–4
efficiency, 282, 342
fluctuation(s), 228, 233, 304, 344, 350
oscillatory behavior, 231
Field emission(s) (continued)
- photo-assisted, 247, 302–6
- polarization, 257–8, 273–6
- resonance peaks, 206, 215, 334–5
- scattering, 227, 230–237, 247, 279, 351
- spectroscopy, 247, 300, 318, 330
- stability, 233, 296, 346–9, 361
- thermal-assisted, 345
- uniformity, 228, 318

Field emitter
carbon nanotubes (see Carbon nanotubes (CNTs))
diamond-like carbon (DLC) (see Diamond-like carbon)
metal-insulator-metal (MIM) structure, 227, 328
metallic, 222, 248–51
metal-oxide-semiconductor (MOS) structure, 201, 227–34, 238–9
multilayer cathodes, 207
nanobelts, 222, 277
nanorods, 222, 277, 288–300, 304
nanowires, 204–5, 222–5, 277, 288–90, 293–9, 320
one-dimensional (1D) structures, 222, 224, 277, 280, 295
pulse laser ablation (PLA), 238, 277
Spindt-type, 227

Field enhancement coefficient, 206, 221, 271, 277, 302, 305, 339

Fowler-Nordheim (F-N) characteristics, 271, 295

GaAs wedge emitter, 336

Gallium nitride (GaN) emitter(s), 277–306
- amorphous (a-GaN), 258–61
- arrays, 277, 288–9
- conducting GaN channel, 259
- graded electron affinity, 262–3
- multilayer, 263–7, 271
- nanoclusters, 258, 261
- nanocrystalline film, 258–62
- nanorods, 277, 288, 290–291, 294–5, 299–300
- nanostructured, 258, 263, 266–73, 277
- nanowires, 277, 288–90, 293–9
Gas adsorption/desorption. See Adsorbates

Giants Current, 422

Grain boundary, 260–261

Graphene, 352–62
- CNT-Graphene Composites, 355
- Nanoplatelets (GNPs), 360
- Reduced graphene oxide, 355
- Green’s function, 376
- Gunn Effect, 415

Heat sink, 407

Helix, 421

Heterojunction(s)
- GaN-AlGaN, 79
- interface, 80
- plane, 80

High frequency generation, 246–7, 305–6

High frequency sources. See High frequency generation

Hot-electron tunneling mechanism, 232–4, 324

Image charge potential, 87

for the field and thermionic emission, 99

Indium Tin Oxides (ITO), 438

Intervalley Carrier Redistribution, 277–8, 284, 287

Intervalley energy difference, 277–8, 282–7, 299

Ion bombardment, 326, 346–7

Laser illumination, 195

Life time, 377

Loch oscillation, 398

Lorentz approximation, 32
Main valley, 280–287
Matrix
equation, 3
method, 3
technique, 3
Maxwell approximation, 282
Maxwell-Boltzmann carrier distribution, 280
Maxwell distribution, 281
Mesa etching, 402
Metal Organic Vapor Phase Epitaxy (MOVPE), 253
Micro-electro-mechanical systems (MEMSs), 398
Microlithography, 375
Microwave generation, 375
Miniature tubes, 247
Minibands, 211
Molecular beam epitaxy (MBE), 262, 294–5, 407
Multi-walled nanotubes (MWNTs), 341–51
Nanoelectronics device(s), 172
Nanoparticle(s)
boundary, 153
diameter, 153
radius, 162
Nanostructure materials, 142
Negative differential resistance, 376
Negative electron affinity (NEA), 249–50, 255, 273, 291–2, 314–20
Negative injection conductivity, 385
Nitrides, 398
Oscillation(s)
quantum, 17
the scale of, 18
semiclassical, 18
Photoexcited FE spectroscopy, 300–301
Photofield emission. See Field emission(s)
Photoluminescence (PL) spectra, 205, 216, 327
Photon adsorption, 303, 327
Photonic crystal, 397
Poisson equation, 256, 264
Polar phonon oscillation, 391
Poole-Frenkel (P-F) law, 218, 323
Potential box of atomic dimensions, 50
with infinitely high walls, 73
Pulsed laser deposition (PLD), 258
Pulse laser ablation (PLA), 238, 277
Quantization, of electron energy spectra, 87
Quantum cathodes, 201, 246, 314
cathomefficiency effect, 237, 280–283, 286–7
levels, 208, 266, 269, 276
mechanical tunneling, 259, 278
size effect, 210–211, 215–17, 273, 278, 287
well, 208, 267–74, 350–351
Quantum cascade laser, 405
Reactive ion etching (RIE), 295, 336, 348
Resonance tunneling. See Resonant tunneling
Resonant levels, 205, 215
Resonant tunneling, 204–7, 210–214, 263, 266–9, 273–7, 350–351
Richardson-Dushman approach, 268
Sapphire, 416
Satellite valley, 278–87, 299, 304–6
Schottky barrier at the substrate interface, 227, 247, 298–9, 322–3
Schrödinger equation, 278, 282
Screening effects, 251, 288, 293–4, 342, 352, 356
Screen printing method, 345, 361
Secondary electron emission (SEE), 317
Semiconductor(s)
bulk, 128
emitter, 119
films, 82
layer, 119
material, 143
structures, 129
surface, 129
tip, 128
Semiconductor(s) (continued)
valence band, 179
Sharpening technique, 202, 273, 336, 342
Si emitter(s)
arrays, 201–3, 208, 215, 217, 222, 226, 238
band edges, 188
conducting channels, 217–24
conduction band minimum, 188
MOS cathodes, 194
nanoclusters, 209, 211
nanocomposite, 208–11, 215–17
nanocrystals, 201, 204–5, 208, 212–17, 222–5, 234–9
nanoinclusions (see Si emitter(s) nanocrystals)
nanoparticles, 202, 208, 213–15, 224, 226
nanowire(s) (see Field emitter nanowires)
native oxide surface, 193
nc-Si layer (see Si emitter(s) nanocrystals)
polycrystalline Si (poly-Si), 228, 238
porous silicon (PS), 202–5, 217, 232
sponge-like structure, 205
surface, 190
tip array, 185
tips, 185
Single-walled nanotubes (SWNTs), 315, 341, 348, 350
Sol-gel method, 277, 322
Space charge limited currents (SCLCs), 330
Spacer
Kapton, 300–301
teflon film, 203, 336
Spindt-type metal microtips, 180
Superlattice diode, 403
Supply function, 48
Surface barrier, 227, 263, 266–73, 323
Surface states, 222–6, 250, 316, 319, 350–351
Terahertz sources, 391
Thermal conductivity, 233, 249, 314, 354
Thermionic emission, 315
Three methyl gallium (TMGa), 416
Threshold field, 255, 259, 288–9, 314
Tight binding, 401
Time of flight mass spectrometer (TOFMS), 212, 234
Transfer matrix (TM) method, 264, 352
Transmission line measurements, 402
Transmission probability. See Tunneling, probability
Travelling Wave Tube (TWT), 421
Tunneling
barrier, 27
carrier masses, 27
carriers, 140
characteristic, 159
currents, 25, 135
diode, 135
in double barrier structures, 136
effects, 7, 129
electrons, 135
from the emitter, 135
exponent, 165
front model, 27
model, 140
from the nanoclusters, 165
in nanoparticle, 119
particle, 32
path, 27
peaks, 135
phenomena, 133, 150
potential, 133
probability, 3, 125, 216, 231, 251, 270, 278–80, 298, 303, 331, 333
process, 136
rates, 152
resonant, 119
steps, 163
structure, 29, 134
theories, 124
through electron states, 150
through one barrier, 120
through resonant-tunneling structures, 136
through the barrier, 160
through the first energy level, 147
through the surface barrier, 143
through triangular barrier, 22
 towards the anode, 142
transport, 144
transport process, 159
two-step electron, 119
Turn-on field, 288–9

Ultraviolet photoemission spectroscopy
(UPS), 273, 317
UV illumination, 300, 304–5

Vacuum
 microtube(s), 306
 nanoelectronic devices, 246–7, 322
 nanotube, 375
 tube, 375

Wave(s)
 amplitudes of, 6
 continuity of, 4
de Broglie, 8
effective approximation of, 3
electron, 18
 envelope, 3
 incident, 6
 particles, 5
 plane, 8
 reflected, 3
 transmitted, 7
Wave function, 257, 278, 283
Well(s)
 between, 29
 within, 28
 above, 18
 bottom of, 37
 energy, 31
 potential, 16
 quantum, 3
 width of, 36
Wentzel-Kramers-Brillouin (WKB)
 approximation, 230, 264
Wide bandgap semiconductor(s), 246–250, 277
Wigner function, 376
Work function
 of the body, 107
 of cathode, 107
 of semiconductor, 106
 of the substrate, 107
 of the surface, 107
 of the emitter, 108
X-ray diffraction (XRD), 259
X-ray photoelectron spectroscopy (XPS), 271