CONTENTS

PREFACE

xiii

PART 1 FUNDAMENTALS

1 Overview of This Book

1.1 Energy Sustainability, 3
1.2 ULSD – Important Part of the Energy Mix, 4
1.3 Technical Challenges for Making ULSD, 7
1.4 What is the Book Written for, 8

References, 8

2 Refinery Feeds, Products, and Processes

2.1 Introduction, 9
2.2 ASTM Standard for Crude Characterization, 10
2.3 Important Terminologies in Crude Characterization, 12
2.4 Refining Processes, 13
2.5 Products and Properties, 15
2.6 Biofuel, 20

3 Diesel Hydrotreating Process

3.1 Why Diesel Hydrotreating?, 23
3.2 Basic Process Flowsheeting, 25
3.3 Feeds, 28
3.4 Products, 30
3.5 Reaction Mechanisms, 36
3.6 Hydrotreating Catalysts, 40
3.7 Key Process Conditions, 44
3.8 Different Types of Process Designs, 47
References, 48

4 Description of Hydrocracking Process
4.1 Why Hydrocracking, 51
4.2 Basic Processing Blocks, 53
4.3 Feeds, 58
4.4 Products, 59
4.5 Reaction Mechanism and Catalysts, 61
4.6 Catalysts, 67
4.7 Key Process Conditions, 70
4.8 Typical Process Designs, 75
References, 78

PART 2 HYDROPROCESSING DESIGN

5 Process Design Considerations
5.1 Introduction, 81
5.2 Reactor Design, 81
5.3 Recycle Gas Purity, 98
5.4 Wash Water, 102
5.5 Separator Design, 107
5.6 Makeup Gas Compression, 115
References, 121

6 Distillate Hydrotreating Unit Design
6.1 Introduction, 123
6.2 Number of Separators, 123
6.3 Stripper Design, 127
6.4 Debutanizer Design, 135
6.5 Integrated Design, 136
References, 147

7 Hydrocracking Unit Design
7.1 Introduction, 149
7.2 Single-stage Hydrocracking Reactor Section, 150
7.3 Two-stage Hydrocracking Reactor Section, 155
7.4 Use of a Hot Separator in Hydrocracking Unit Design, 158
7.5 Use of Flash Drums, 160
7.6 Hydrocracking Unit Fractionation Section Design, 161
7.7 Fractionator First Flow Scheme, 161
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8</td>
<td>Debutanizer First Flow Scheme</td>
<td>163</td>
</tr>
<tr>
<td>7.9</td>
<td>Stripper First Fractionation Flow Scheme</td>
<td>166</td>
</tr>
<tr>
<td>7.10</td>
<td>Dual Zone Stripper Fractionation Flow Scheme</td>
<td>168</td>
</tr>
<tr>
<td>7.11</td>
<td>Dual Zone Stripper – Dual Fractionator Flow Scheme</td>
<td>170</td>
</tr>
<tr>
<td>7.12</td>
<td>Hot Separator Operating Temperature</td>
<td>171</td>
</tr>
<tr>
<td>7.13</td>
<td>Hydrogen Recovery</td>
<td>174</td>
</tr>
<tr>
<td>7.14</td>
<td>LPG Recovery</td>
<td>175</td>
</tr>
<tr>
<td>7.15</td>
<td>HPNA Rejection</td>
<td>177</td>
</tr>
<tr>
<td>7.16</td>
<td>Hydrocracking Unit Integrated Design</td>
<td>181</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>187</td>
</tr>
</tbody>
</table>

PART 3 ENERGY AND PROCESS INTEGRATION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Heat Integration for Better Energy Efficiency</td>
<td>191</td>
</tr>
<tr>
<td>9</td>
<td>Process Integration for Low-Cost Design</td>
<td>215</td>
</tr>
<tr>
<td>10</td>
<td>Distillation Column Operating Window</td>
<td>249</td>
</tr>
</tbody>
</table>

PART 3 ENERGY AND PROCESS INTEGRATION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Heat Integration for Better Energy Efficiency</td>
<td>191</td>
</tr>
<tr>
<td>9</td>
<td>Process Integration for Low-Cost Design</td>
<td>215</td>
</tr>
<tr>
<td>10</td>
<td>Distillation Column Operating Window</td>
<td>249</td>
</tr>
</tbody>
</table>
10.11 Concluding Remarks, 296
Nomenclature, 297
References, 299

PART 4 PROCESS EQUIPMENT ASSESSMENT 301

11 Fired Heater Assessment 303
11.1 Introduction, 303
11.2 Fired Heater Design for High Reliability, 304
11.3 Fired Heater Operation for High Reliability, 310
11.4 Efficient Fired Heater Operation, 315
11.5 Fired Heater Revamp, 321
Nomenclature, 322
References, 322

12 Pump Assessment 323
12.1 Introduction, 323
12.2 Understanding Pump Head, 324
12.3 Define Pump Head – Bernoulli Equation, 325
12.4 Calculate Pump Head, 329
12.5 Total Head Calculation Examples, 330
12.6 Pump System Characteristics – System Curve, 332
12.7 Pump Characteristics – Pump Curve, 333
12.8 Best Efficiency Point (BEP), 338
12.9 Pump Curves for Different Pump Arrangement, 338
12.10 NPSH, 340
12.11 Spillback, 345
12.12 Reliability Operating Envelope (ROE), 346
12.13 Pump Control, 347
12.14 Pump Selection and Sizing, 347
Nomenclature, 351
References, 351

13 Compressor Assessment 353
13.1 Introduction, 353
13.2 Types of Compressors, 354
13.3 Impeller Configurations, 357
13.4 Type of Blades, 358
13.5 How a Compressor Works, 358
13.6 Fundamentals of Centrifugal Compressors, 360
13.7 Performance Curves, 362
13.8 Partial Load Control, 364
13.9 Inlet Throttle Valve, 366
CONTENTS

13.10 Process Context for a Centrifugal Compressor, 367
13.11 Compressor Selection, 368
Nomenclature, 369
References, 369

14 Heat Exchanger Assessment 371

14.1 Introduction, 371
14.2 Basic Concepts and Calculations, 371
14.3 Understand Performance Criterion – U Values, 374
14.4 Understand Fouling, 380
14.5 Understand Pressure Drop, 382
14.6 Effects of Velocity on Heat Transfer, Pressure Drop, and Fouling, 384
14.7 Heat Exchanger Rating Assessment, 385
14.8 Improving Heat Exchanger Performance, 396
Nomenclature, 399
References, 400

15 Distillation Column Assessment 401

15.1 Introduction, 401
15.2 Define a Base Case, 401
15.3 Calculations for Missing and Incomplete Data, 403
15.4 Building Process Simulation, 406
15.5 Heat and Material Balance Assessment, 408
15.6 Tower Efficiency Assessment, 411
15.7 Operating Profile Assessment, 414
15.8 Tower Rating Assessment, 417
15.9 Guidelines, 419
Nomenclature, 420
References, 420

PART 5 PROCESS SYSTEM EVALUATION 423

16 Energy Benchmarking 425

16.1 Introduction, 425
16.2 Definition of Energy Intensity for a Process, 426
16.3 The Concept of Fuel Equivalent for Steam and Power (FE), 427
16.4 Data Extraction, 429
16.5 Convert All Energy Usage to Fuel Equivalent, 432
16.6 Energy Balance, 432
16.7 Fuel Equivalent for Steam and Power, 435
16.8 Energy Performance Index (EPI) Method for Energy Benchmarking, 441
CONTENTS

16.9 Concluding Remarks, 444
16.10 Nomenclature, 445
References, 446

17 Key Indicators and Targets 447

17.1 Introduction, 447
17.2 Key Indicators Represent Operation Opportunities, 448
17.3 Define Key Indicators, 451
17.4 Set Up Targets for Key Indicators, 456
17.5 Economic Evaluation for Key Indicators, 460
17.6 Application 1: Implementing Key Indicators into an “Energy Dashboard”, 463
17.7 Application 2: Implementing Key Indicators to Controllers, 465
17.8 It is Worth the Effort, 466
Nomenclature, 467
References, 467

18 Distillation System Optimization 469

18.1 Introduction, 469
18.2 Tower Optimization Basics, 470
18.3 Energy Optimization for Distillation System, 475
18.4 Overall Process Optimization, 481
18.5 Concluding Remarks, 489
References, 490

PART 6 OPERATIONAL GUIDELINES AND TROUBLESHOOTING 491

19 Common Operating Issues 493

19.1 Introduction, 493
19.2 Catalyst Activation Problems, 494
19.3 Feedstock Variations and Contaminants, 495
19.4 Operation Upsets, 496
19.5 Treating/Cracking Catalyst Deactivation Imbalance, 497
19.6 Flow Maldistribution, 500
19.7 Temperature Excursion, 501
19.8 Reactor Pressure Drop, 504
19.9 Corrosion, 506
19.10 HPNA, 509
19.11 Conclusion, 511
20 Troubleshooting Case Analysis

20.1 Introduction, 513
20.2 Case Study I – Product Selectivity Changes, 514
20.3 Case Study II – Feedstock Changes, 516
20.4 Case Study III – Catalyst Deactivation Balance, 523
20.5 Case Study IV – Catalyst Migration, 526
20.6 Conclusion, 536